Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Symmetrical Σ7 tilt grain boundaries of alumina (Al2O3) were studied using bicrystals. Three types of Σ7 boundaries were successfully fabricated, that is, rhombohedral twin (Σ7{1[Onemacr]02}) and two types of [0001] symmetrical tilt grain boundaries with grain-boundary planes {4[Fivemacr]10} and {2[Threemacr]10} (Σ7{4[Fivemacr]10} and Σ7{2[Threemacr]10}). Their atomic structures and grain-boundary energies were investigated using high-resolution transmission electron microscopy (HRTEM) and a thermal grooving technique, respectively. HRTEM observations showed that the Σ7{1[Onemacr]02} boundary had a completely symmetrical atomic arrangement with respect to the grain-boundary plane. In contrast, Σ7{2[Threemacr]10} and Σ7{4[Fivemacr]10} boundaries exhibited asymmetrical atomic structures, which were confirmed by analyzing the atomic configurations using static lattice calculations. Thermal grooving experiments showed that the grain-boundary energies strongly depended on the properties of the grain-boundary planes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Alumina bicrystals with low-angle and near-Σ3 〈0001〉 tilt grain boundaries were fabricated using diffusion bonding to study the dislocation structures in alumina grain boundaries. The resulting grain-boundary structures were investigated using high-resolution transmission electron microscopy, and the grain-boundary energies were analyzed using theoretical calculations. It was found that partial dislocations with Burgers vectors of the type return ⅓〈10[Onemacr]0〉 were periodically located in the boundaries and that a stacking fault between pairs of partials was formed in such boundaries. The length of the stacking fault decreased with increased misorientation angles, which was reasonably predicted by the theoretical calculation. In the case of a near-Σ3 grain boundary, an array of displacement shift complete dislocations with the Burgers vector of return ⅓〈1[Onemacr]00〉 was periodically formed along the boundaries. These boundaries did not have stacking faults. The spacing between the dislocations decreased with increased deviation angle from the exact-Σ3 boundary with the tilt angle of 60°.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 84 (2001), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The superplastic characteristics of various cation-doped yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) were examined. For 1 mol% cation doping the true stress of Y-TZP is very dependent on the ionic radii of the doped cations; for instance, smaller cation radii give rise to lower true stress when compared with the other compositions for the same grain size, strain rate, and testing temperature. The altered true stress level must be due to the change in diffusivity of the accommodation process for grain boundary sliding caused by the addition of cations in ZrO2. The strain to failure of the doped zirconia is affected by both ionic radius and valence of the dopant cations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The grain growth in silica-doped 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (SiO2-doped 3Y-TZP) and undoped 3Y-TZP has been examined in the temperature range of 1400°-1800°C. The presence of a SiO2 phase inhibits rather than promotes the grain growth in 3Y-TZP, particularly at high temperatures. During the grain growth in 3Y-TZP, yttrium ions are partitioned between grains, and the grain growth mechanism can be understood from Ostwald ripening dominated by lattice diffusion of cations. In SiO2-doped 3Y-TZP, an amorphous SiO2-rich phase exists only in the grain-boundary corners or junctions, not in the grain-boundary faces. The grain growth in SiO2-doped 3Y-TZP is controlled by using different mechanisms below and above the eutectic temperature of the zirconia-silica (ZrO2-SiO2) system. The glass phase does not have a major role in grain growth below the eutectic temperature, and the grain growth is dominated by a similar mechanism in undoped 3Y-TZP. The grain growth is more effectively retarded by the presence of a SiO2 phase above the eutectic temperature and is likely to be controlled by a solution-reprecipitation process in the amorphous phase at the grain-boundary corners or junctions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: As in fiber-reinforced composites, debonding, which allows the elongated reinforcing grains to at least partially separate from the rest of the matrix, is a critical part of the toughening mechanism in self-reinforced silicon nitrides. In situ high-resolution electron microscopy observations reveal that the debonding path can occur at the interface between the grains and continuous nanometer-thick intergranular film (IGF) or within the IGF depending on the film's composition, which varies with the yttria to alumina ratio in the fixed total amount of sintering additives. Theoretical calculations reveal that the bonding across the interface can be weakened by decreasing the Al and O content (z) of the epitaxial Si6–ZAlZOZN8–Z layer on the grains, which is consistent with the observations of interfacial debonding. However, evidence also indicates that weakening of the amorphous network of the IGF occurs with increase in yttrium levels that can be responsible for the observed mixture of debonding by crack propagation along the interface and within the IGF when the sintering additive contains the highest yttria:alumina ratio.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The microstructures of fine-grained β-SiC materials with α-SiC seeds annealed either with or without uniaxial pressure at 1900°C for 4 h in an argon atmosphere were investigated using analytical electron microscopy and high-resolution electron microscopy (HREM). An applied annealing pressure can greatly retard phase transformation and grain growth. The material annealed with pressure consisted of fine grains with β-SiC as a major phase. In contrast, the microstructure in the material annealed without pressure consisted of elongated grains with half α-SiC. Energy-dispersive X-ray analysis showed no differences in the amount of segregation of aluminum and oxygen atoms at grain boundaries, but did show a significant difference in the segregation of yttrium atoms at grain boundaries along SiC grains for the two materials. The increased segregation of yttrium ions at grain boundaries caused by the applied pressure might be the reason for the retarded phase transformation and grain growth. HREM showed a thin secondary phase of 1 nm at the grain boundary interface for both materials. The development of a composite grain consisting of a mixture of β/α polytypes during annealing was a feature common to both materials. The possible mechanisms for grain growth and phase transformation are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Current-voltage (I–V) characteristics across (0001) twist boundaries with various misorientation angles were investigated in undoped ZnO bicrystals fabricated by a hot-joining technique. It was confirmed by high-resolution transmission electron microscopy that the boundaries were perfectly joined without intergranular phase. None of the bicrystals prepared in this study exhibited nonlinear I–V characteristics irrespective of coherency at the boundaries. Therefore, grain-boundary atomic configuration had no relation to the formation of double Schottky barriers at the (0001) twist boundaries in ZnO.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The electronic structures of undoped c- and t-ZrO2 were calculated by a first-principles molecular orbital method. A preliminary analysis revealed that experimental energy-loss near-edge structure profiles obtained in ZrO2–8 mol% Y2O3 could be satisfactorily explained from the present theoretical calculation. The calculation suggests that the stability of t-ZrO2 could be described by the interaction between neighboring oxygen ions rather than the covalency of Zr—O bonds. The effect of dopant cations on the stability of cubic-zirconia solid solutions can be estimated semiquantitatively in terms of the repulsive Coulomb force between neighboring oxygen ions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Chlorine implantation into TiN coatings decreases the wear loss and the friction coefficient. Even by low-dose chlorine implantation, the wear volume is decreased by three orders of magnitude or more, and the friction coefficient becomes 〈0.1. This self-lubrication mechanism is related to the presence and mobility of implanted chlorine atoms inside the columnar TiN microstructure. According to observations of chlorine-implanted TiN coatings using high-resolution transmission electron microscopy, the chlorine atoms are present in the damaged region, where TiN is composed of nanosized grains. From these data, a self-lubrication mechanism is proposed with chlorine catalyzing the oxidation of titanium and leading to the formation of some tribological reaction product.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The deformation behavior of a hot-pressed, fine-grained β-Si3N4 ceramic was investigated in the temperature range 1450°—1650°C, under compression, and the results for strain rate and temperature dependence of the flow stress are presented here. The present results show that the material is capable of high rates of deformation (∼10−4—10−3 s−1) within a wide range of deformation temperatures and under a pressure of 5—100 MPa; no strain hardening occurs in the material, even at slow deformation rates, because of its stable microstructure; Newtonian flow occurs, with a stress exponent of approximately unity; and the material has activation energy values for flow in the range 344—410 kJ·mol−1. Grain-boundary sliding and grain rotation, accommodated by viscous flow, might be the mechanisms of superplasticity for the present material.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...