Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 222 (1969), S. 1066-1067 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Previous work in this laboratory has identified a protein in chicken nervous tissue which is phosphorylated in vivo by neurotoxic organophosphorus esters, but not by non-neurotoxic analogues2'3. In vitro this protein can hydro-lyse the phenyl ester of 1-phenylacetic acid (PPA)4'5. Although the ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 37 (1977), S. 113-115 
    ISSN: 1432-0738
    Keywords: Determination ; Neurotoxic esterase ; Neurotoxicity ; Organophosphate compounds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Durch Bestimmung der neurotoxischen Esterase (NTE) ist es möglich, im Gehirn von mit phosphororganischen Pflanzenschutzmitteln, Weichmachern und anderen Stoffen behandelten Hühnern die potentielle Neurotoxizität dieser Stoffe zu erfassen. Die ursprüngliche Methode [Johnson, M. K. Biochem. J. 114, 711–717 (1969)] wurde vereinfacht, so daß Zentrifugieren und Transferschritte nicht mehr erforderlich sind. Die Selektivität und Empfindlichkeit der Methode wurde verbessert. Die Herstellung stabiler Reagentienstammlösungen wird beschrieben.
    Notes: Abstract The assay of neurotoxic esterase (NTE) in brains taken from dosed hens enables potential neurotoxicity of organophosphate pesticides, plasticers, etc. to be assessed. The original assay [Johnson, M. K. Biochem. J. 114, 711–717 (1969)] has been simplified to eliminate centrifugation and transfer steps and both the selectivity and the sensitivity have been increased. The procedures necessary to obtain stable reagent stocks are described.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 34 (1975), S. 259-288 
    ISSN: 1432-0738
    Keywords: Organophosphates ; Neurotoxicity ; Mechanism ; Structure/Activity ; Organophosphate ; Neurotoxizität ; Wirkungsmechanismus ; Struktur-Aktivitätsbeziehungen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Description / Table of Contents: Zusammenfassung Wirkungsmechanismus Die Beweisführung nimmt an, daß die Phosphorylierung des aktiven Zentrums eines spezifischen Enzyms, “neurotoxische Esterase” genannt, das initiale biochemische Ereignis der zur verzögerten Neurotoxizität führenden Reaktionsfolge ist. Darauf folgt die Spaltung einer Bindung (hydrolytisch?) die einen monosubstituierten Phosphorsäurerest am Protein hinterläßt. — Der Mechanismus, auf dem die Schutzwirkung einiger Phosphonsäureester gegenüber neurotoxischen Substanzen beruht, wird erläutert. Screening-Methode Die Bestimmung der Wirkung auf die Aktivität der “neurotoxischen Esterase” im Hühnergehirn (in vitro und in vivo) stellt eine schnelle biochemische Probe zur Ergänzung des 3wöchigen klinischen Tests dar. Der Test erlaubt die Abschätzung von Sicherheitsgrenzen für Substanzen, die negative Ergebnisse im klinischen Test erbringen und häufig als Pestizide, Weichmacher usw. verwendet werden. Vereinfachte Bestimmungsmethoden wurden entwickelt. Struktur-Wirkungs-Eeziehungen Für viele Verbindungen liegen Daten über die biochemische und neurotoxische Wirkung vor. Diese dienen als Basis für Vorhersagen von Struktur-Wirkungs-Beziehungen. Die seit 1930 veröffentlichten Daten zur Neurotoxizität werden unter diesem Gesichtspunkt behandelt.
    Notes: Abstract Mechanism of Action Evidence is reviewed that the initial biochemical event leading to delayed neurotoxicity is phosphorylation of the active site of a specific enzyme called Neurotoxic Esterase. This is followed by a bondcleavage (? hydrolytic) leading to formation of a mono-substituted phosphoric acid residue on the protein. The mechanism by which some phosphinates protect hens against neurotoxic compounds is explained. Screening Assay Assay of effects of compounds on Neurotoxic Esterase activity of hen brain in vitro and in vivo provides a quick biochemical screen to supplement the 3-week clinical test. This test provides an estimate of safety margin for compounds which give negative results in the clinical test and are currently used as pesticides, plasticisers, etc. Simplified assay procedures are being developed. Structure/Activity Studies Data is now available for the biochemical and neurotoxic activity of many compounds. This provides a basis for structure/activity predictions; neurotoxicity data published since 1930 has been assessed in this light.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 45 (1980), S. 263-271 
    ISSN: 1432-0738
    Keywords: Organophosphate neuropathy ; Organophosphate ; Chronic dosing ; Neurotoxic esterase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of small repeated oral doses of mono-2-cresyl diphenyl phosphate (MOCP, 2.5 mg/kg/day) on hen brain and spinal cord neurotoxic esterase (NTE) were measured. The enzyme levels were depressed to about 40% and 55% of normal respectively and maintained at that level for 8 weeks. No clinical and only doubtful histological signs of neuropathy were detected. Neuropathy could be precipitated by depressing the level to 〈 20% either with a single high dose (50 mg/kg), or by an increase of the repeated dose level to 5 mg/kg/day. There was no correlation between inhibition of NTE in the nervous tissue and the “NTE-like” activity in lymphocytes. “NTE-like” activity in spleen was consistently inhibited but to a lesser extent than that in the brain or spinal cord. Brain AChE and BuChE were not affected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-1327
    Keywords: Key words Molybdenum oxotransferase ; Resonance Raman ; Catalytic mechanism ; 18O labeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract  Recent studies of human sulfite oxidase and Rhodobacter sphaeroides DMSO reductase have demonstrated the ability of resonance Raman to probe in detail the coordination environment of the Mo active sites in oxotransferases via Mo=O, Mo-S(dithiolene), Mo-S(Cys) or Mo-O(Ser), dithiolene chelate ring and bound substrate vibrations. Furthermore, the ability to monitor the catalytically exchangeable oxo group via isotopic labeling affords direct mechanistic information and structures for the catalytically competent Mo(IV) and Mo(VI) species. The results clearly demonstrate that sulfite oxidase cycles between cis–di-oxo-Mo(VI) and mono-oxo-Mo(IV) states during catalytic turnover, whereas DMSO reductase cycles between mono-oxo-Mo(VI) and des-oxo-Mo(IV) states. In the case of DMSO reductase, 18O-labeling experiments have provided the first direct evidence for an oxygen atom transfer mechanism involving an Mo=O species. Of particular importance is that the active-site structures and detailed mechanism of DMSO reductase in solution, as determined by resonance Raman spectroscopy, are quite different to those reported or deduced in the three X-ray crystallographic studies of DMSO reductases from Rhodobacter species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-1327
    Keywords: Key words Iron-sulfur clusters assembly ; Iron metabolism ; NifU protein ; Resonance Raman ; Rubredoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The NifS and NifU nitrogen fixation-specific gene products are required for the full activation of both the Fe-protein and MoFe-protein of nitrogenase from Azotobacter vinelandii. Because the two nitrogenase component proteins both require the assembly of [Fe-S]-containing clusters for their activation, it has been suggested that NifS and NifU could have complementary functions in the mobilization of sulfur and iron necessary for nitrogenase-specific [Fe-S] cluster assembly. The NifS protein has been shown to have cysteine desulfurase activity and can be used to supply sulfide for the in vitro catalytic formation of [Fe-S] clusters. The NifU protein was previously purified and shown to be a homodimer with a [2Fe-2S] cluster in each subunit. In the present work, primary sequence comparisons, amino acid substitution experiments, and optical and resonance Raman spectroscopic characterization of recombinantly produced NifU and NifU fragments are used to show that NifU has a modular structure. One module is contained in approximately the N-terminal third of NifU and is shown to provide a labile rubredoxin-like ferric-binding site. Cysteine residues Cys35, Cys62, and Cys106 are necessary for binding iron in the rubredoxin-like mode and visible extinction coefficients indicate that up to one ferric ion can be bound per NifU monomer. The second module is contained in approximately the C-terminal half of NifU and provides the [2Fe-2S] cluster-binding site. Cysteine residues Cys137, Cys139, Cys172, and Cys175 provide ligands to the [2Fe-2S] cluster. The cysteines involved in ligating the mononuclear Fe in the rubredoxin-like site and those that provide the [2Fe-2S] cluster ligands are all required for the full physiological function of NifU. The only two other cysteines contained within NifU, Cys272 and Cys275, are not necessary for iron binding at either site, nor are they required for the full physiological function of NifU. The results provide the basis for a model where iron bound in labile rubredoxin-like sites within NifU is used for [Fe-S] cluster formation. The [2Fe-2S] clusters contained within NifU are proposed to have a redox function involving the release of Fe from bacterioferritin and/or the release of Fe or an [Fe-S] cluster precursor from the rubredoxin-like binding site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-1327
    Keywords: Tungsten ; Aldehyde ferredoxin oxidoreductase ; Electron paramagnetic resonance ; Magnetic circular dichroism ; Iron-sulfur cluster
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Thermococcus litoralis (Tl) have been investigated by using the combination of EPR and variable-temperature magnetic circular dichroism (VTMCD) spectroscopies. The results reveal a [Fe4S4]2+,+ cluster (E m=−368 mV) that undergoes redox cycling between an oxidized form with an S=0 ground state and a reduced form that exists as a pH- and medium-dependent mixture of S=3/2 (g=5.4; E/D=0.33) and S=1/2 (g=2.03, 1.93, 1.86) ground states, with the former dominating in the presence of 50% (v/v) glycerol. Three distinct types of W(V) EPR signals have been observed during dye-mediated redox titration of as-isolated Tl FOR. The initial resonance observed upon oxidation, termed the “low-potential” W(V) species (g=1.977, 1.898, 1.843), corresponds to approximately 25–30% of the total W and undergoes redox cycling between W(IV)/W(V) and W(V)/W(VI) states at physiologically relevant potentials (E m=−335 and −280 mV, respectively). At higher potentials a minor “mid-potential” W(V) species, g=1.983, 1.956, 1.932, accounting for less than 5% of the total W, appears with a midpoint potential of −34 mV and persists up to at least +300 mV. At potentials above 0 mV, a major “high-potential” W(V) signal, g=1.981, 1.956, 1.883, accounting for 30–40% of the total W, appears at a midpoint potential of +184 mV. As-isolated samples of Tl FOR were found to undergo an approximately 8-fold enhancement in activity on incubation with excess Na2S under reducing conditions and the sulfide-activated Tl FOR was partially inactivated by cyanide. The spectroscopic and redox properties of the sulfide-activated Tl FOR are quite distinct from those of the as-isolated enzyme, with loss of the low-potential species and changes in both the mid-potential W(V) species (g=1.981, 1.950, 1.931; E m=−265 mV) and high-potential W(V) species (g=1.981, 1.952, 1.895; E m=+65 mV). Taken together, the W(V) species in sulfide-activated samples of Tl FOR maximally account for only 15% of the total W. Both types of high-potential W(V) species were lost upon incubation with cyanide and the sulfide-activated high-potential species is converted into the as-isolated high-potential species upon exposure to air. Structural models are proposed for each of the observed W(V) species and both types of mid-potential and high-potential species are proposed to be artifacts of ligand-based oxidation of W(VI) species. A W(VI) species with terminal sulfido or thiol ligands is proposed to be responsible for the catalytic activity in sulfide-activated samples of Tl FOR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...