Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    International journal of legal medicine 112 (1999), S. 261-267 
    ISSN: 1437-1596
    Keywords: Key words Axonal injury ; Midbrain ; Biomechanics ; Specificity ; Diffuse axonal injury
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Law
    Notes: Abstract Experimental studies have shown that diffuse axonal injury is usually induced by positive or negative acceleration mechanisms. In order to determine the reliability of axonal injury (AI) as a marker of this type of traumatic insult, we compared cases of trauma-induced focal cortical hemorrhage without dural involvement (n = 67) with cases of trauma-induced subdural bleeding without cortical hemorrhage (n = 26). Both groups exhibited a wide range of post-traumatic survival times. The injuries in the first group were caused mainly by direct impact to the head, those in the second by acceleration/deceleration mechanisms. The investigations were based primarily on immunohistochemical demonstration of antibodies targeted to β-amyloid precursor protein (β-APP) in the pons as a marker of AI and the results were assessed semiquantitatively. No significant differences were found between the two groups. In both groups AI was detected in 80–100% of cases with survival times of more than 3 h and two thirds of all positive cases showed pronounced positivity. Additional comparison of cases of brain death due to mechanical trauma (n = 14) with cases of brain death due to non-mechanical trauma (n = 18) also disclosed no significant intergroup differences. Finally, investigations of the pons in cases of non-traumatic death due to cerebral hypoxia/ischemia (n = 51) demonstrated AI with the same frequency as in the other groups, although the expression tended to be less pronounced. Our results confirm that β-APP expression in the pons is a reliable indicator of AI but does not discriminate between injuries caused by traumatic strain or shearing mechanisms and secondary damage due to cerebral hypoxia/ ischemia or edema. In the large majority of cases with prolonged post-traumatic survival, it can therefore be assumed that AI in the pons is the consequence of primary and/or secondary events or a combination of both, as is common in non-missile head injury survived for more than 90–120 min. Therefore, positive differentiation of the type of biomechanical event based on this criterion alone is not possible.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...