Library

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2013
    Keywords: Ca2+ channel ; Stimulation-secretion coupling ; Exocrine secretion ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cl− secretion in HT29 cells is regulated by agonists such as carbachol, neurotensin and adenosine 5′-triphosphate (ATP). These agonists induce Ca2+ store release as well as Ca2+ influx from the extracellular space. The increase in cytosolic Ca2+ enhances the Cl− and K+ conductances of these cells. Removal of extracellular Ca2+ strongly attenuates the secretory response to the above-mentioned agonists. The present study utilises patch-clamp methods to characterise the Ca2+ influx pathway. Inhibitors which have been shown previously to inhibit non-selective cation channels, such as flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=6) inhibited ATP (0.1 mmol·l−1) induced increases in whole-cell conductance (G m). When Cl− and K+ currents were inhibited by the presence of Cs2SO4 in the patch pipette and gluconate in the bath, ATP (0.1 mmol·l−1) still induced a significant increase in G m from 1.2±0.3 nS to 4.7±1 nS (n=24). This suggests that ATP induces a cation influx with a conductance of approximately 3–4 nS. This cation influx was inhibited by flufenamate (0.1 mmol·l−1, n=6) and Gd3+ (10 μmol·l−1, n=9). When Ba2+ (5 mmol·l−1) and 4,4′-diisothiocyanatostilbene-2-2′-disulphonic acid (DIDS, 0.1 mmol·l−1) were added to the KCl/K-gluconate pipette solution to inhibit K+ and Cl− currents and the cells were clamped to depolarised voltages, ATP (0.1 mmol·l−1) reduced the membrane current (I m) significantly from 86±14 pA to 54±11 pA (n=13), unmasking a cation inward current. In another series, the cation inward current was activated by dialysing the cell with a KCl/K-gluconate solution containing 5–10 mmol·l−1 1,2-bis-(2-aminoethoxy)ethane-N,N,N′,N′-tetraacetic acid (EGTA) or 1,2-bis-(2-aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid (BAPTA). The zero-current membrane voltage (V m) and I m (at a clamp voltage of +10 mV) were monitored as a function of time. A new steady-state was reached 30–120 s after membrane rupture. V m depolarised significantly from −33±2 mV to −12±1 mV, and I m fell significantly from 17±2 pA to 8.9±1.0 pA (n=71). This negative current, representing a cation inward current, was activated when Ca2+ stores were emptied and was reduced significantly (ΔI m) when Ca2+ and/or Na+ were removed from the bathing solution: removal of Ca2+ in the absence of Na+ caused a ΔI m of 5.0±1.2 pA (n=12); removal of Na+ in the absence of Ca2+ caused a ΔI m of 12.8±3.5 pA (n=4). The cation inward current was also reduced significantly by La3+, Gd3+, and flufenamate. We conclude that store depletion induces a Ca2+/Na+ influx current in these cells. With 145 mmol·l−1 Na+ and 1 mmol·l−1 Ca2+, both ions contribute to this cation inward current. This current is an important component in the agonist-regulated secretory response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Mesangial cell ; Cell swelling ; Ion currents ; Intracellular Ca2+ activity ; Cl− conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Membrane voltage (V m) and ion currents of rat mesangial cells in primary culture were measured with the patch-clamp technique in the fast whole-cell configuration.V m was −44 ± 1 mV (n = 138). A reduction of the osmolality from 290 to 190 mosmol/kg depolarizedV m from −44 ± 1 to −29 ± 1 mV (n = 118) and increased the inward and outward conductances (Gm) from 14±2 to 39 ± 4 nS and 13±2 to 37 ± 4 nS (n = 84), respectively. During the hypotonicity-induced depolarization the cell capacitance increased significantly from 33 ± 3 to 42 ± 4 pF (n = 40). The effect of hypotonic cell swelling onV m was increased in a bath with a reduced extracellular Cl− of 32 mmol/l (by 71 ± 4%,n = 23), indicating that a Cl− conductance was activated. The permselectivity of this conductance was I− ≥ Br− 〉 Cl−. TheV m response was not affected in the presence of a reduced extracellular Na+ of 5 mmol/l (n = 13) and was inhibited in a solution with reduced extracellular Ca2+ concentration (by 63 ± 9%,n = 14). In microfluorescence measurements with the Ca2+-sensitive dye fura-2 hypotonic cell swelling induced a sustained increase of the intracellular Ca2+ activity, [Ca2+]i (n = 19). The increase of [Ca2+]i was completely inhibited when the extracellular solution was free of Ca2+. TheV m response to hypotonic cell swelling was not attenuated in the presence of the L-type Ca2+ channel blockers nicardipine (n = 5), nifedipine (n = 5) and verapamil (n = 5) (all at 1 μmol/l). The data indicate that in rat mesangial cells, osmotic swelling induces a Ca2+ influx from extracellular space. This Ca2+ influx activates a Cl− conductance resulting in a depolarization ofV m. The enhanced Cl− conductance may lead to KCl extrusion and hence regulatory volume decrease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Ca2+ influx ; Nystatin perforated patchclamp technique ; Fura-2 ; HT29 ; ATP ; Thapsigargin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Indirect evidence has accumulated indicating a voltage dependence of the agonist-stimulated Ca2+ influx into epithelial cells. Manoeuvres expected to depolarise the membrane voltage during agonist stimulation resulted in: (1) a decrease of the sustained phase of the adenosine triphosphate (ATP, 10−5 mol/l)-induced intracellular Ca2+ transient, (2) a reduced fura-2 Mn2+-quenching rate, and (3) prevention of the refilling of the agonist-sensitive store. To quantify the change in intracellular Ca2+ as a function of membrane voltage, we measured simultaneously the intracellular Ca2+ activity ([Ca2+]i) with fura-2 and the electrical properties using the nystatin perforated patch-clamp technique in single HT29 cells. Ca2+ influx was either stimulated by ATP (10−5 mol/l) or thapsigargin (TG, 10−8 mol/l). After [Ca2+]i reached the sustained plateau phase we clamped the membrane voltage in steps of 10 mV in either direction. A stepwise depolarisation resulted in a stepwise reduction of [Ca2+]i. Similarly a stepwise hyperpolarisation resulted in a stepwise increase of [Ca2+]i (ATP: 27.5±10 nmol/l per 10 mV, n=6; TG: 19 ±7.9 nmol/l per 10 mV, n=12). The summarised data show a linear relationship between the Δ fluorescence ratio 340/380 nm change and the applied holding voltage. In unstimulated cells the same voltage-clamp protocol did not change [Ca2+]i (n=9). Under extracellular Ca2+-free conditions [Ca2+]i remained unaltered when changing the membrane voltage. These data provide direct evidence that the Ca2+ influx in epithelial cells is membrane voltage dependent. Our data indicate that small changes in membrane voltage lead to substantial changes in [Ca2+]i. This may be due either to a change of driving force for Ca2+ into the cell, or may reflect voltage-dependent regulation of the respective Ca2+ entry mechanism.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words Colon ; Fura-2 ; Rat colonic crypt ; ATP ; P2Y-receptor ; Purinoceptor ; Exocrine secretion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Under resting conditions the mammalian distal colon is a NaCl-absorptive epithelium. NaCl absorption occurs at surface cells in colonic crypts. Intracellular Ca2+ or cAMP are important second messengers that activate NaCl secretion, a function that is most pronounced in crypt bases. In the present study we examined the effect of extracellular ATP on isolated crypts of rat distal colon using the fura-2 technique. Intracellular Ca2+ ([Ca2+]i) was measured spectrofluorimetrically either by photon counting or video imaging. ATP reversibly increased [Ca2+]i in crypt base cells with an EC50 of 4.5 μmol/l (n = 11). This [Ca2+]i increase was composed of an initial peak, reflecting intracellular store release, and a secondary plateau phase reflecting transmembrane influx. Digital video imaging revealed that agonist-induced [Ca2+]i elevations were most marked at the crypt base. In the middle part of the crypt ATP induced smaller increases of [Ca2+]i (peak and plateau) as compared to basal cells and in surface cells this [Ca2+]i transient was even further reduced. Attempts to identify the relevant P2-receptor demonstrated the following rank order of potency: 2MeS-ATP 〉 ADP ≥ ATP 〉〉 AMP 〉 UTP 〉 AMP-PCP 〉 adenosine. In Ussing chamber experiments ATP (1 mmol/l) functioned as a secretagogue, increasing transepithelial voltage (V te) and equivalent short-circuit current (I sc): ΔI sc = –36.4 ± 5.4 μA/cm2, n = 17. Adenosine itself (1 mmol/l) induced an increase of I sc of similar magnitude to that induced by ATP: ΔI sc = –55.1 ± 8.4 μA/cm2, n = 9. The effect of adenosine, but not that of ATP, was fully inhibited by the A1/A2-receptor antagonist 8-(p-sulphophenyl)theophylline, 0.5 mmol/l, n = 4. Together these data indicate that: (1) basolateral ATP induces [Ca2+]i in isolated rat colonic crypts and acts as a secretagogue in the distal rat colon; (2) a basolateral P2Y-receptor is responsible for this ATP-induced NaCl secretion; (3) the ability of ATP to increase I sc in Ussing chamber experiments is not mediated via adenosine; and (4) the agonist-induced [Ca2+]i signals are mostly located in the crypt base, which is the secretory part of the colonic crypt.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2013
    Keywords: Ca2+ Cyclosporin A Fura-2 Kidney LLC-PK1-cells Nephrotoxicity Proximal tubule Signal transduction Tacrolimus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Here we have examined the effects of Cyclosporin A (CyA) on the free intracellular Ca2+ concentration ([Ca2+]i) of LLC-PK1/PKE20 cells to evaluate mechanisms of CyA nephrotoxicity using Fura-2 microspectrofluorometry or digital fluorescence video imaging. The CyA-associated changes were compared to the effects of tacrolimus (Tac), a structurally unrelated immunosuppressant with similar cellular pathways which also causes nephrotoxicity. CyA (EC50: 1 nmol/l, n=16) and Tac (EC50: 1 nmol/l, n=5) caused a concentration-dependent increase of [Ca2+]i which was substantially attenuated by reducing the external Ca2+ concentration (10–6 mol/l). Similarly Cyclosporin H, a non-immunosuppressive analogue of CyA, stimulated a Ca2+ influx. Nicardipine (10–6 mol/l) reduced the CyA- and the Tac-induced Ca2+ influx to 52±16% (n=10) and 13±10% (n=13) of control respectively. Diltiazem and verapamil (10–6 mol/l) were also effective, but flufenamate (10–4 mol/l), Gd3+ (10–5 mol/l) and La3+ (10–5 mol/l) were not. In the absence of extracellular Ca2+ CyA led to a small but significant [Ca2+]i increase, indicating additional release from internal stores. Depletion of inositol-1,4,5-trisphosphate- (InsP 3-) sensitive Ca2+ stores by extracellular ATP (10–4 mol/l) in low-Ca2+ solution completely suppressed the CyA-induced [Ca2+]i rise. CyA had no effect on the cellular InsP 3 concentration. Furthermore, inhibition of phospholipase-Cβ (PLCβ) by U73122 (2×10–5 mol/l) did not alter the CyA-stimulated [Ca2+]i rise. A direct effect of CyA on InsP 3-sensitive Ca2+ stores, the InsP 3 receptor, the Ca2+ content of the stores or involvement of additional stores is assumed. Incubation with CyA for 1, 12 and 24 h enhanced the rise in [Ca2+]i peak induced by ATP, arginine vasopressin (AVP) and angiotensin II. In summary, CyA stimulated a [Ca2+]i increase in LLC-PK1 cells through Ca2+ release from InsP 3-sensitive stores and Ca2+ influx via a nicardipine-sensitive pathway. The CyA-mediated [Ca2+]i increase is independent of PLCβ activity and InsP 3 metabolism. CyA caused long-term enhancement of the agonist-induced rise in [Ca2+]i. The effects of CyA on Ca2+ signaling appear to be independent of its immunosuppressive action.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 428 (1994), S. 631-640 
    ISSN: 1432-2013
    Keywords: Intracellular pH ; K+ channel ; NH4 +/NH3 Patch clamp ; BCECF
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The K+ channels of the principal cells of rat cortical collecting duct (CCD) are pH sensitive in excised membranes. K+ secretion is decreased with increased H+ secretion during acidosis. We examined whether the pH sensitivity of these K+ channels is present also in the intact cell and thus could explain the coupling between K+ and H+ secretion. Membrane voltages (V m), whole-cell conductances (g c), and single-channel currents of K+ channels were recorded from freshly isolated CCD cells or isolated CCD segments with the patch-clamp method. Intracellular pH (pHi) was measured using the pH-sensitive fluorescent dye 2′-7′-bis(carboxyethyl)-5-6-carboxyfluorescein (BCECF). Acetate (20 mmol/l) had no effect on V m, g c, or the activity of the K+ channels in these cells. Acetate, however, acidified pHi slightly by 0.17±0.04 pH units (n=19). V m depolarized by 12±3 mV (n=26) and by 23±2 mV (n=66) and g c decreased by 26±5% (n=13) and by 55±5% (n=12) with 3–5 or 8–10% CO2, respectively. The same CO2 concentrations decreased pHi by 0.49±0.07 (n=15) and 0.73±0.11 pH units (n=12), respectively. Open probability (P o) of all four K+ channels in the intact rat CCD cells was reversibly inhibited by 8–10% CO2. pHi increased with the addition of 20 mmol/l NH4 +/NH3 by a maximum of 0.64±0.08 pH units (n=33) and acidified transiently by 0.37±0.05 pH units (n=33) upon NH4 +/NH3 removal. In the presence of NH4 +/NH3 V m depolarized by 16±2 mV (n=66) and g c decreased by 26±7% (n=16). The activity of all four K+ channels was also strongly inhibited in the presence of NH4 +/NH3. The effect of NH4 +/NH3 on V m and g c was markedly increased when the pH of the NH4 +/NH3-containing solution was set to 8.5 or 9.2. From these data we conclude that cellular acidification in rat CCD principal cells down-regulates K+ conductances, thus reduces K+ secretion by direct inhibition of K+ channel activity. This pH dependence is present in all four K+ channels of the rat CCD. The inhibition of K+ channels by NH4 +/NH3 is independent of changes in pHi and rather involves an effect of NH3.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 421 (1992), S. 403-405 
    ISSN: 1432-2013
    Keywords: HT29 ; CFPAC-1 ; Cl− Secretion ; cAMP ; ATP ; Neurotensin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous studies in HT29 cells have revealed that the Cl− channels induced by cAMP or by increasing cytosolic Ca2+, e.g. by addition of ATP, and by hypotonic cell swelling share in common all examined properties, such as ion selectivity and blocker sensitivity. In addition, it was shown that conductances induced by either pathway were not additive. Therefore all three pathways apparently act on the same type of small conductance Cl− channel. In CFPAC-1 cells the general properties of the Cl− conductance were identical. However, the cAMP response was absent. In both cell types the Ca2+-mediated conductance response was transient. Here we examine the kinetics of the conductance increases induced by neurotensin (NT, 10−8 mol/l) or ATP (10−5 mol/l) in HT29 and CFPAC-1 cells using the slow (nystatin) or fast whole cell patch clamp technique, and we ask whether cAMP influences these kinetics. In the continuous presence of NT the conductance response in both cell types was very transient. It collapsed with a time constant (τ) of 39 (30–56 s) in HT29 and of 33 (27–41 s) in CFPAC-1 cells. The ATP response was also transient with a τ of 49 (42–57 s) in HT29 cells and 102 (77–152 s) in CFPAC-1 cells. Pre-treatment by membrane permeable cAMP (10−3 mol/l) enhanced the baseline conductance in HT29 but not in CFPAC-1 cells. Furthermore, the ATP- and NT-induced conductance increases became significantly less transient in HT29 but not in CFPAC-1 cells. In the former cells τ was enhanced significantly to 207 (154–316 s) after ATP and to 1.533 (1004-∞ s) after NT. In CFPAC-1 cells the transient nature of the conductance response persisted. These data indicate that cAMP and Ca2+ co-operate in HT29- but not in CFPAC-1-cells. In the former cells the transient conductance response is converted into a more stable response by cAMP. In CFPAC-1 cells the cAMP-mechanism is not functioning. Therefore, all Ca2+-mediated conductance responses are only very transient.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2013
    Keywords: Key words Mesangial cell ; Cell swelling ; Ion currents ; Intracellular Ca2+ activity ; Cl ; conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Membrane voltage (V m) and ion currents of rat mesangial cells in primary culture were measured with the patch-clamp technique in the fast whole-cell configuration. V m was −44 ± 1 mV (n = 138). A reduction of the osmolality from 290 to 190 mosmol/kg depolarized V m from −44 ± 1 to −29 ± 1 mV (n = 118) and increased the inward and outward conductances (G m) from 14 ± 2 to 39 ± 4 nS and 13 ± 2 to 37 ± 4 nS (n = 84), respectively. During the hypotonicity-induced depolarization the cell capacitance increased significantly from 33 ± 3 to 42 ± 4 pF (n = 40). The effect of hypotonic cell swelling on V m was increased in a bath with a reduced extracellular Cl− of 32 mmol/l (by 71 ± 4%, n = 23), indicating that a Cl− conductance was activated. The permselectivity of this conductance was I−≥ Br− 〉 Cl−. The V m response was not affected in the presence of a reduced extracellular Na+ of 5 mmol/l (n = 13) and was inhibited in a solution with reduced extracellular Ca2+ concentration (by 63 ± 9%, n = 14). In microfluorescence measurements with the Ca2+-sensitive dye fura-2 hypotonic cell swelling induced a sustained increase of the intracellular Ca2+ activity, [Ca2+]i (n = 19). The increase of  [Ca2+]i was completely inhibited when the extracellular solution was free of Ca2+. The V m response to hypotonic cell swelling was not attenuated in the presence of the L-type Ca2+ channel blockers nicardipine (n = 5), nifedipine (n = 5) and verapamil (n = 5) (all at 1 μmol/l). The data indicate that in rat mesangial cells, osmotic swelling induces a Ca2+ influx from extracellular space. This Ca2+ influx activates a Cl− conductance resulting in a depolarization of V m. The enhanced Cl− conductance may lead to KCl extrusion and hence regulatory volume decrease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Key words CO2/HCO3 ; NH3/NH4+ ; pHi ; [Ca2+]i ; Fura-2 ; BCECF ; Ca2+ store ; Ca2+ influx ; Inositol 1 ; 4 ; 5-trisphosphate ; Epithelia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The influence of intracellular pH (pHi) on intracellular Ca2+ activity ([Ca2+]i) in HT29 cells was examined microspectrofluorometrically. pHi was changed by replacing phosphate buffer by the diffusible buffers CO2/HCO3 –or NH3/NH4 + (pH 7.4). CO2/HCO3 –buffers at 2,5 or 10% acidified pHi by 0.1, 0.32 and 0.38 pH units, respectively, and increased [Ca2+]i by 8–15 nmol/l. This effect was independent of the extracellular Ca2+ activity and the filling state of thapsigargin-sensitive Ca2+ stores. Removing the CO2/HCO3 –buffer alkalinized pHi by 0.14 (2%), 0.27 (5%), and 0.38 (10%) units and enhanced [Ca2+]i to a peak value of 20, 65, and 143 nmol/l, respectively. Experiments carried out with Ca2+-free solution and with thapsigargin showed that the [Ca2+]i transient was due to release from intracellular pools and stimulated Ca2+ entry. NH3/NH4 + (20 mmol/l) induced a transient intracellular alkalinization by 0.6 pHunits and increased [Ca2+]i to a peak (Δ [Ca2+]i = 164 nmol/l). The peak [Ca2+]i increase was not influenced by removal of external Ca2+, but the decline to basal [Ca2+]i was faster. Neither the phospholipase C inhibitor U73122 nor the inositol 1,4,5-trisphosphate (InsP 3) antagonist theophylline had any influence on the NH3/NH4 +-stimulated [Ca2+]i increase, whereas carbachol-induced [Ca2+]i transients were reduced by more than 80% and 30%, respectively. InsP 3 measurements showed no change of InsP 3 during exposure to NH3/NH4 +, whereas carbachol enhanced the InsP 3 concentration, and this effect was abolished by U73122. The pHi influence on ”capacitative” Ca2+ influx was also examined. An acid pHi attenuated, and an alkaline pHi enhanced, carbachol- and thapsigargin-induced [Ca2+]i influx. We conclude that: (1) an alkaline pHi releases Ca2+ from InsP 3-dependent intracellular stores; (2) the store release is InsP 3 independent and occurs via an as yet unknown mechanism; (3) the store release stimulates capacitative Ca2+ influx; (4) the capacitative Ca2+ influx activated by InsP 3 agonists is decreased by acidic and enhanced by alkaline pHi. The effects of pHi on [Ca2+]i should be of relevance under many physiological conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2013
    Keywords: Key words Confocal microscopy ; Acousto-optic tunable filter ; Fura-2 ; Ratio imaging ; HT29 cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  A confocal, ultraviolet laser scanning microscope (LSM) for reliable ratio measurements of localized intracellular Ca2+ gradients using the Ca2+-sensitive dye Fura-2 was developed. In a commercial LSM, the filter wheels for the excitation band-pass filters and the grey filters were replaced by acousto-optic tunable filters (AOTF) for rapid switching (≤1.5 μs) of the ultraviolet (351 and 364 nm) and the visible (457, 476, 488, 514 nm) excitation light. This enabled dual wavelength excitation of Fura-2, or 2’7’-biscarboxyethyl-5(6)-carboxyfluorescein (BCECF) for pH measurements. Changing to a transmitted-light detector of high sensitivity allowed for simultaneous recording of differential interference contrast images of the preparation with the excitation light. The AOTF fine control of the intensity of the excitation light and improvements in the emission detector sensitivity enabled the acquisition of up to 120 ratio pairs of high-quality images from a single cell. The optical capabilities and limitations of the instrument were evaluated with fluorescent beads and dye-loaded cultured cells. Agonist-induced intracellular Ca2+ transients in HT29 cells were recorded to test for the instrument’s ability to measure changes in [Ca2+]i. Ratio z-sections from Fura-2-loaded cells showed an inhomogeneity of the Fura-2 loading with an accumulation of the dye mostly in the mitochondria. We show, as an example of the microscope’s achievable resolution, the spatial and temporal heterogeneity of [Ca2+]i signals in mitochondria and the cytosol in response to agonist-evoked stimulation of HT29 cells. In addition, we show that the lipophilic, membrane-bound Fura-2 derivative Fura-C18, for measurements of near-membrane Ca2+ changes, can be used with this confocal microscope. This new LSM is expected to deepen our understanding of localized [Ca2+]i signals; for example, the nuclear Ca2+ signalling or the [Ca2+]i changes that occur during stimulation of ion secretion in polarized epithelial cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...