Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 23 (1996), S. 93-98 
    ISSN: 1432-0789
    Keywords: Added nitrogen interaction ; Alkaline-hydrolysing fertilizer ; Aqua ammonia ; Gross N immobilization ; Gross N mineralization ; 15N ; Soluble organic N availability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Organic N solubilized by NH3(aq) was extracted from 15N-labelled or unlabelled soil, concentrated and added to non-extracted soil, which was incubated under aerobic conditions at 27±1°C. Gross N mineralization, gross N immobilization, and nitrification in soils with or without addition of unlabelled soluble organic N were estimated by models based on the dilution of the NH 4 + or NO inf3 sup- pools, which were labelled with 15N at the beginning of incubation. Mineralization of labelled organic N was measured by the appearance of label in the mineral N pool. Although gross N mineralization and gross N immobilization were increased in two soils between day 0 and day 7 following addition of unlabelled organic N solubilized by NH3(aq), there was no increase in net N mineralization. Solubilization of 15N-labelled organic N increased and the 15N enrichment of the soluble organic N decereased as the concentration of NH3(aq) added increased. A constant proportion of approximately one-quarter of the labelled organic N added at different rates to non-extracted soil was recovered in the mineral N pool after an incubation period of 14 days, and the availability ratios calculated from net N mineralization data were 1.1:1 and 2.1:1 for 111 and 186 mg added organic-N kg-1 soil, respectively, indicating that the mineralization of organic N was increased by solubilization.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 41-48 
    ISSN: 1432-0789
    Keywords: Added nitrogen interaction ; Ammonia fixation ; 15N ; Immobilization ; Fertilizer-induced solubilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Added N interactions were measured in four soil incubated with 15N-labelled urea or diammonium phosphate. The use of biologically active, γ-irradiated, or reinoculated γ-irradiated samples allowed us to separate added N interactions due to chemical and biological processes, and to distinguish real interactions from apparent effects. Real biologically mediated added N interactions were observed in one soil for both fertilizer sources and in three soils amended with urea. These real interactions increased with the N fertilizer rate, but did not differ significantly between N sources. Fertilizer-induced unlabelled organic N in soil extracts declined during incubation in both sterile and non-sterile samples, but the temporal decline was higher in biologically active soil. Changes in fertilizer-induced unlabelled organic N in the extracts of three soils attributed to biological processes were similar to the measured real biologically mediated added N interactions. The results are consistent with the hypothesis that real biologically mediated added N interactions arise from the mineralization of soil organic N solubilized by alkaline-hydrolysing N fertilizers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...