Library

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1985-1989  (1)
  • GM-CSF Receptor  (1)
Material
Years
  • 1985-1989  (1)
Year
  • 1
    ISSN: 1432-0584
    Keywords: GM-CSF Receptor ; Granulocytes ; Oxidative metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary We investigated the interaction between GM-CSF and its receptor on human granulocytes and on several human tumor cell lines. Specific high-affinity binding for GM-CSF was characterized by Scatchard plot analysis. The specific radioactivity of the 125I-labeled derivative of rH. GM-CSF was determined by self-displacement analysis and calculated to be 30 μCi/μg. The maximum concentration of binding sites (B max) in granulocytes was 40 fmol/mg protein (2,200 molecules GM-CSF bound/cell) and the dissociation constant (KD) was 0.42 nM. No binding sites for GM-CSF were found in two lung cancer cell lines, SCLC-16HV and NCI-N417 or in the urinary bladder carcinoma cell line 5637, whereas the promyelocytic leukemia cell line HL60 was positive for GM-CSF binding. Time course experiments showed maximum binding of GM-CSF in granulocytes after an incubation period of 60 min and a decrease in binding after an incubation period of 2 h. In parallel, we found a maximum biological signal when granulocytes were preincubated for 90 min with GM-CSF, and a decrease after an incubation time of 120 min. Preincubation of the cells with rH. GM-CSF induced an enhancement of the production of activated oxygen species by the cells in response to PMA.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...