Library

Language
Preferred search index
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Two families with Gerstmann-Sträussler-Scheinker disease (GSS) are atypical in possessing neocortical neurofibrillary tangles (NFTs), which are few or absent in other kindreds with GSS, in additon to amyloid plaques that react with prion protein (PrP) antibodies and protease-resistant PrP ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 495 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] APOLIPOPROTEIN E (APOE) appears to play an important role in the pathogenesis of Alzheimer's disease (AD), as the relative risk of developing late-onset senile dementia of the AD type is increased in individuals who inherit an APOEε4 allele1. In humans, APOE is a single gene located on ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] The Indiana kindred variant of Gerstmann-Sträussler-Scheinker disease has amyloid plaques that contain prion protein (PrP), but is atypical because neurofibrillary tangles like those of Alzheimer disease are present. To map the position of the disease causing gene, we used three markers for ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0533
    Keywords: Key words Neuronal storage disease ; Cholesterol ; metabolism ; Tau ; Paired helical filaments ; Lysosomal disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Niemann-Pick disease type C (NPC) is an autosomal recessive disease, belonging to a clinically heterogeneous group of lipid storage diseases, distinguished by a unique error in cellular trafficking of exogenous cholesterol, associated with lysosomal accumulation of unesterified cholesterol. Unlike Niemann-Pick disease types A and B, there is no primary genetic defect in sphingomyelinase in NPC. During the routine neuropathological study of NPC patients, we found neurofibrillary tangles (NFT) in a series of cases with a slowly progressive chronic course. These were not associated with β-amyloid deposits. The NFT were most frequent in the orbital gyrus, cingulate gyrus and entorhinal region of the cerebral cortex, but were also frequently found in the basal ganglia, thalamus and hypothalamus. In one of the most severely affected case, the NFT were even found in the neurons in the inferior olivary nucleus and in the spinal cord. The NFT were immunostained with Alz 50, and consisted of paired helical filaments. The distribution of the neurons bearing the NFT was generally similar to that of the swollen storage neurons, and storage neurons often contained NFT in their perikarya and/or in the meganeurites. However, neurons with NFT could be noted without swollen perikarya. The coexistence of neuronal storage and NFT in NPC without amyloid deposits suggests that perturbed cholesterol metabolism and/or lysosomal membrane trafficking may play a role in the formation of NFT, and that amyloid deposits are not necessarily the prerequisite for NFT formation. The results of our study also suggest that NFT formation may be a rather nonspecific cellular reaction of neurons to certain slowly progressive metabolic perturbations of an as yet undefined nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0533
    Keywords: Neuronal storage disease ; Cholesterol metabolism ; Tau ; Paired helical filaments ; Lysosomal disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Niemann-Pick disease type C (NPC) is an autosomal recessive disease, belonging to a clinically heterogeneous group of lipid storage diseases, distinguished by a unique error in cellular trafficking of exogenous cholesterol, associated with lysosomal accumulation of unesterified cholesterol. Unlike Niemann-Pick disease types A and B, there is no primary genetic defect in sphingomyelinase in NPC. During the routine neuropathological study of NPC patients, we found neurofibrillary tangles (NFT) in a series of cases with a slowly progressive chronic course. These were not associated with β-amyloid deposits. The NFT were most frequent in the orbital gyrus, cingulate gyrus and entorhinal region of the cerebral cortex, but were also frequently found in the basal ganglia, thalamus and hypothalamus. In one of the most severely affected case, the NFT were even found in the neurons in the inferior olivary nucleus and in the spinal cord. The NFT were immunostained with Alz 50, and cosisted of paired helical filaments. The distribution of the neurons bearing the NFT was generally similar to that of the swollen storage neurons, and storage neurons often contained NFT in their perikarya and/or in the meganeurites. However, neurons with NFT could be noted without swollen perikarya. The coexistence of neuronal storage and NFT in NPC without amyloid deposits suggests that perturbed cholesterol metabolism and/or lysosomal membrane trafficking may play a role in the formation of NFT, and that amyloid deposits are not necessarily the prerequisite for NFT formation. The results of our study also suggest that NFT formation may be a rather nonspecific cellular reaction of neurons to certain slowly progressive metabolic perturbations of an as yet undefined nature.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 176 (1987), S. 145-154 
    ISSN: 1432-0568
    Keywords: Neurological mutant mice ; ‘Purkinje cell degeneration’ (pcd) ; Weaver ; Neural transplants ; Cerebellum ; Light microscopy ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Embryonic cerebellar grafts from genetically normal donors were implanted into the cerebellomedullary cistern of adult ‘Purkinje cell degeneration’ (pcd) and weaver mutant mice, which are respectively characterized by the selective loss of Purkinje and granule cells. Grafts placed into both mutant recipients exhibited a layered cellular organization reminiscent of the normal cerebellar cortex. Molecular, Purkinje, and granule cell layers were identifiable. Grafted Purkinje cells displayed characteristic cytological features, such as hypolemmal cisterns in association with mitochondria in the perikaryon, and lamellar structures in their axons. The cytological features of granule cell somata in the grafts appeared similar to those of mature granule cells. Electron microscopic examination of the molecular layer of the grafts revealed the presence of parallel fibers, which were not oriented in a parallel fashion; axon terminals of such fibers were often presynaptic to dendritic spines. The number of parallel fibers was markedly reduced in grafts implanted into both mutants compared to the normal cerebellar cortex; however, this phenomenon is commonly seen in cerebellum in tissue culture and in cerebellar transplants into normal hosts. It is concluded, therefore, that the environment of the mutant hosts does not affect the survival of Purkinje or granule cells and that transplantation of solid cerebellar grafts in the neurological mutants studied does not seem to pose any apparent limitations beyond those inherent to the process of cerebellar growth and differentiation outside its normal environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0568
    Keywords: Cerebellar graft ; Deep cerebellar nuclei ; Neurological mutant mice ; “Purkinje cell degeneration” (pcd)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In transplanting embryonic cerebellar grafts to the cerebellar cortex of “Purkinje cell degeneration” (pcd) mutant mice to replace missing Purkinje cells (PC), donor PC leave the graft and migrate to the molecular layer of the host. However, PC axons do not always reach the deep cerebellar nuclei of the host, which would be a key element in restoring much of the necessary inhibitory cortico-nuclear projection associated with normal cerebellar function. Rather, grafted PC axons often innervate a region containing deep cerebellar nuclei neurons inside the transplant, while the perikaryon migrates to the host molecular layer. In the present study, aimed at re-establishing a PC innervation of the deep nuclei, we implanted E12 cerebellar cell suspensions intraparenchymally to the deep cerebellar mass of the hosts. The development of grafted PC was monitored with 28-kDa calcium-binding protein (CaBP) immunocytochemistry at various times after transplantation. At short survival times (5 days after grafting), grafts were confined to the site of the original injection. At longer survival times (7–32 days after grafting), grafted PC formed a migratory stream that reached the cerebellar cortex of the host. The most robust graft development was seen 1 month after grafting, the longest survival time allowed in this series of experiments. At that time, clusters of donor PC were found both in the deep nuclei parenchyma and aligned along cortical folia. The orientation of the dendritic trees of PC that had migrated to the cortex was toward the pia. A CaBP-immunoreactive fibre plexus innervated the host deep cerebellar nuclei. The stream of grafted PC extended from the deep cerebellar nuclei to the cerebellar cortex of the host, indicating that donor PC could establish their axonal contacts in the deep nuclei and then move to their final cortical locality, thus recapitulating a migratory path normally taken during cerebellar ontogeny. It appears therefore that both from the pathophysiological and ontogenetic standpoints, the deep cerebellar nuclei represent the appropriate site for PC implantation in cerebellocortical atrophy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Acta neuropathologica 52 (1980), S. 161-164 
    ISSN: 1432-0533
    Keywords: Neurofibrillary degeneration ; Maytansine ; Adult mouse ; Dorsal root ganglion ; Tissue culture ; Aging
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of maytansine, an antimitotic compound isolated from an African plant, were studied by light and electron microscopy in dissociated cell cultures of adult mouse dorsal root ganglia. Maytansine at 10–100 ng/ml concentration caused reversible, concentration-dependent, inhibition of microtubule assembly and induction of a large amount of 10 nm filaments in the cytoplasm of cultured neurons and Schwann cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1106
    Keywords: Key words Dopamine ; Gene action ; Tissue culture ; Weaver ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The murine weaver (wv) mutation is characterized by a genetically determined loss of several neuronal populations, which include the nigrostriatal dopaminergic neurons. Animals homozygous for the wv gene exhibit marked deficits in dopaminergic morphological and neurochemical parameters. The wv gene shows incomplete dominance in that heterozygous (wv/+) mice exhibit moderate reductions in midbrain dopaminergic neuron number. It is unclear whether the dopaminergic neuronal loss in homozygous and heterozygous animals results from an effect of the wv gene solely on the dopaminergic neurons or is due to a failure of interaction of dopaminergic neurons with target cells of the striatum. This issue has been addressed utilizing three-dimensional reaggregate tissue cultures to determine whether the wv gene acts directly on the mesencephalic dopaminergic neurons. Embryonic mesencephalon and striatum from wv/+ and wild-type (+/+) brains were dissociated and the cells recombined into four mesencephalic-striatal aggregate combinations: (1) mesencephalic(+/+)-striatal(+/+)aggregates; (2) mesencephalic (wv/+) -striatal (wv/+) aggregates; (3) mesencephalic (wv/+) -striatal(+/+)aggregates; and (4) mesencephalic(+/+)-striatal (wv/+) aggregates. At 29 days and 57 days of culture, the number of dopaminergic neurons and dopamine content from mesencephalic-striatal aggregates consisting of mixed genotype or from only wv/+ tissue were quantitated and compared with that from mesencephalic-striatal cultures prepared from +/+ tissue alone. At both culture time points, aggregates containing wv/+ mesencephalon coaggregated with either wv/+ or +/+ striatum contained fewer dopaminergic neurons than mesencephalic-striatal cultures composed of only +/+ cells. Coaggregation of +/+ mesencephalon with wv/+ striatum did not have a detrimental effect on dopaminergic cell number. The findings demonstrate that the difference in the number of mesencephalic dopaminergic neurons between wv/+ and +/+ animals seen in vivo can be reproduced in three-dimensional reaggregate culture. Since the coculture of +/+ striatum with wv/+ mesencephalon did not appear to rescue wv/+ dopaminergic neurons in the aggregates as compared to wv/+ striatum and, wv/+ striatum proved to be a perfectly adequate target for +/+ mesencephalic dopaminergic neurons, it appears that the effect of the wv gene is on the dopaminergic neurons themselves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...