Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 495 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1546-170X
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Fetal grafts of normal cerebellar tissue were implanted into the cerebellum of Purkinje cell degeneration mutant mice (pcd/pcd), a model of adult–onset recessively inherited cerebello–olivary atrophy, in an attempt at correcting their cellular and motor impairment. Donor cerebellar ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 176 (1987), S. 145-154 
    ISSN: 1432-0568
    Keywords: Neurological mutant mice ; ‘Purkinje cell degeneration’ (pcd) ; Weaver ; Neural transplants ; Cerebellum ; Light microscopy ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Embryonic cerebellar grafts from genetically normal donors were implanted into the cerebellomedullary cistern of adult ‘Purkinje cell degeneration’ (pcd) and weaver mutant mice, which are respectively characterized by the selective loss of Purkinje and granule cells. Grafts placed into both mutant recipients exhibited a layered cellular organization reminiscent of the normal cerebellar cortex. Molecular, Purkinje, and granule cell layers were identifiable. Grafted Purkinje cells displayed characteristic cytological features, such as hypolemmal cisterns in association with mitochondria in the perikaryon, and lamellar structures in their axons. The cytological features of granule cell somata in the grafts appeared similar to those of mature granule cells. Electron microscopic examination of the molecular layer of the grafts revealed the presence of parallel fibers, which were not oriented in a parallel fashion; axon terminals of such fibers were often presynaptic to dendritic spines. The number of parallel fibers was markedly reduced in grafts implanted into both mutants compared to the normal cerebellar cortex; however, this phenomenon is commonly seen in cerebellum in tissue culture and in cerebellar transplants into normal hosts. It is concluded, therefore, that the environment of the mutant hosts does not affect the survival of Purkinje or granule cells and that transplantation of solid cerebellar grafts in the neurological mutants studied does not seem to pose any apparent limitations beyond those inherent to the process of cerebellar growth and differentiation outside its normal environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0568
    Keywords: Cerebellar graft ; Deep cerebellar nuclei ; Neurological mutant mice ; “Purkinje cell degeneration” (pcd)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In transplanting embryonic cerebellar grafts to the cerebellar cortex of “Purkinje cell degeneration” (pcd) mutant mice to replace missing Purkinje cells (PC), donor PC leave the graft and migrate to the molecular layer of the host. However, PC axons do not always reach the deep cerebellar nuclei of the host, which would be a key element in restoring much of the necessary inhibitory cortico-nuclear projection associated with normal cerebellar function. Rather, grafted PC axons often innervate a region containing deep cerebellar nuclei neurons inside the transplant, while the perikaryon migrates to the host molecular layer. In the present study, aimed at re-establishing a PC innervation of the deep nuclei, we implanted E12 cerebellar cell suspensions intraparenchymally to the deep cerebellar mass of the hosts. The development of grafted PC was monitored with 28-kDa calcium-binding protein (CaBP) immunocytochemistry at various times after transplantation. At short survival times (5 days after grafting), grafts were confined to the site of the original injection. At longer survival times (7–32 days after grafting), grafted PC formed a migratory stream that reached the cerebellar cortex of the host. The most robust graft development was seen 1 month after grafting, the longest survival time allowed in this series of experiments. At that time, clusters of donor PC were found both in the deep nuclei parenchyma and aligned along cortical folia. The orientation of the dendritic trees of PC that had migrated to the cortex was toward the pia. A CaBP-immunoreactive fibre plexus innervated the host deep cerebellar nuclei. The stream of grafted PC extended from the deep cerebellar nuclei to the cerebellar cortex of the host, indicating that donor PC could establish their axonal contacts in the deep nuclei and then move to their final cortical locality, thus recapitulating a migratory path normally taken during cerebellar ontogeny. It appears therefore that both from the pathophysiological and ontogenetic standpoints, the deep cerebellar nuclei represent the appropriate site for PC implantation in cerebellocortical atrophy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: [3H]thymidine autoradiography ; Substantianigra pars compacta ; Retrorubral field, ventral tegmental area ; Interfascicular nucleus ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Immunocytochemical labeling for tyrosine hydroxylase and [3H]thymidine autoradiography were combined in wild-type mice and in mice homozygous for the weaver mutant gene (wv) to see whether the neurogenetic patterns of midbrain dopaminergic neurons was normal in the mutants and whether the degeneration of dopaminergic neurons was linked to their time of origin. Dams of wild-type and homozygous weaver mice were injected with [3H]thymidine on embryonic days (E) 11–E12, E12–E13, E13–E14, and E14-E15 to label neurons in the retrorubral field, the substantia nigra pars compacta, the ventral tegmental area, and the interfascicular nucleus as they were being generated. The quantitatively determined time of origin profiles indicated that wv/wv mice have the same time span of neurogenesis as +/+ mice (E10 to E14), but have significant deficits in the proportion of late-generated neurons in each dopaminergic population. In the retrorubral field and substantia nigra, weaver homozygotes had substantial losses of dopaminergic neurons and had a greater deficit in the proportion of neurons generated late while, in the ventral tegmental area and interfascicular nucleus, there were slight losses of dopaminergic neurons and only slight deficits in the proportion of late-generated neurons. These findings lead to the conclusion that the weaver gene is specifically targeting dopaminergic neurons that are generated late, mainly on E13 and E14.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Heterozygous weaver mice ; Midbrain dopamine neurons ; TH immunochemistry ; Cell count ; Striatum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The phenotypic effect of theweaver mutation in the ventral midbrain of homozygous mutants is associated with the progressive loss of dopaminergic neurons. To discover whether the number of mesencephalic dopaminergic cells is altered in weaver heterozygotes (wv/+), we studied mice between 20 and 365 days of age. We counted tyrosine hydroxylase (TH)-immunopositive cells in the substantia nigra (SN), retrorubral nucleus (RRN), and ventral tegmental area (VTA), and measured cross-sectional areas of neuronal somata in the SN ofwv/+ and age-matched wild-type controls (+/+). The number of TH-positive cells in thewv+ ventral midbrain was on average 13% lower than normal. Cell loss was detected selectively in the SN (12%) and VTA (23%). The areas of somatic profiles in thewv/+ nigral neurons were on average reduced by 9.8%. The neuronal losses in the SN and VTA correlated with a 13.8% reduction in dopamine level in the ventral striatum inwv/+ mice at 14–16 months of age. Our findings imply that a single dose of theweaver gene in the mouse is associated with cellular damage leading to a chronic deficiency in the mesostriatal dopaminergic system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: [3H]Thymidine autoradiography ; Substantia nigra pars compacta ; Retrorubral field ; Ventral tegmental area ; Interfascicular nucleus ; Mouse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Previous [3H]thymidine studies in Nisslstained sections in rats established that the substantia nigra pars compacta and the ventral tegmental area originate sequentially according to an anterolateral to posteromedial neurogenetic gradient. We investigated whether that same pattern is found in mice in the dopaminergic neurons in each of these structures. Using tyrosine hydroxylase immunostaining combined with [3H]thymidine autoradiography, the time of origin of dopaminergic midbrain neurons in the retrorubral field, the substantia nigra pars compacta, the ventral tegmental area, and the interfascicular nucleus was determined in postnatal day 20 mice. The dams of the experimental animals were injected with [3H]thymidine on embryonic days (E) 11–E12, E12–E13, E13–E14, and E14–E15. The time of origin profiles for each group indicated significant differences between populations. The retrorubral field and the substantia nigra pars compacta arose nearly simultaneously and contained the highest proportion of neurons, 49 to 37%, generated on or before E11. Progressively fewer early-generated neurons were found in the ventral tegmental area (20%), and the interfascicular nucleus (8.5%). In addition, anterior dorsolateral neurons in the substantia nigra and ventral tegmental area were more likely to be generated early than the posterior ventromedial neurons. These findings indicate that mouse and rat brains have nearly identical developmental patterns in the midbrain, and neurogenetic gradients in dopaminergic neurons are similar to those found in Nissl studies in rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-6903
    Keywords: Cerebellar graft ; mouse, neurological mutant ; ‘Purkinje cell degeneration’ (pcd) ; serotonin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract One aspect of integration of implanted neurons into the neuronal circuitry of a defective host brain is the re-establishment of a host-to-graft afferent innervation. We addressed this issue by using the adult cerebellum of ‘Purkinje cell degeneration’ (pcd) mutant mice, which lack virtually all Purkinje cells after postnatal day (P) 45. Purkinje cells constitute one of the cerebellar cell types being innervated by axons of raphé serotonin (5-HT) neurons. In normal mice, 5-HT-immunoreactive fibers are distributed to all cerebellar folia. Following Purkinje cell loss inpcd mice, cerebellar 5-HT-immunoreactive fibers persist. Cerebellar cell suspensions were prepared from embryonic day (E) 11–13 normal mouse embryos and were intraparenchymally grafted into the cerebellum ofpcd mutants either directly or after pre-treatment with 5, 7-dihydroxytryptamine (5,7-DHT) to selectively remove 5-HT cells of donor origin. The state of Purkinje cells and 5-HT axons was monitored in alternate sections by 28-kDa Ca2+-binding protein (CaBP) and 5-HT immunocytochemistry, respectively. Serotonin-immunoreactive axons were seen in the grafts from 5 to 32 days after transplantation. In some of the grafts which had not been pre-treated with 5,7-DHT, a small number of 5-HT-immunoreactive cell bodies was found, indicating that part of the 5-HT fiber innervation of the graft could actually derive from donor cells. On the other hand, in grafts pre-treated with 5,7-DHT, no 5-HT cell bodies were seen in the grafted cerebellum; 5-HT fibre innervation of the grafts occurred, but it appeared to be slightly less robust compared to situations of co-grafted 5-HT cell bodies. These findings suggest that host 5-HT fibers are able to provide afferent innervation to donor cerebellar tissue; the presence of co-grafted 5-HT cells may augment such an innervation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Striatal dopamine deficiency in weaver mutant mice is associated with loss of mesencephalic dopamine neurons. The maximum dopamine concentration in the striatum of weaver mutants is found on postnatal day 20, when it represents 50% of the control value. By day 180, it declines to 25% of the control value. Correspondingly, the number of nigral dopamine neurons is 58% of the normal number on day 20 and becomes 31% of the normal value by day 90. The aim of the present study was to examine whether dopamine axon terminals in the weaver striatum establish synaptic connections with postsynaptic neurons at the time when striatal dopamine concentration is at its peak value (i.e. on postnatal day 20), and if so, to compare the profile of synaptic connectivity of dopamine axon terminals found in the striatum of normal mice with that of heterozygous and homozygous weaver mutants. To that end, 20-day-old weaver homozygotes, along with age-matched weaver heterozygotes and wild-type mice were studied by electron microscopy after immunocytochemical labelling for tyrosine hydroxylase. A single micrograph of each of 1543 dopamine axon terminals was examined in total in the three genotypes; quantitative analyses of the relations of tyrosine hydroxylase immunoreactive nerve terminals were carried out in the dorsolateral striatum, which receives the dopamine projection from the substantia nigra proper. In all three genotypes, junctional contacts formed by tyrosine hydroxylase immunoreactive nerve terminals in the striatum were predominantly of the symmetrical type. In wild-type and heterozygous mice, the majority of contacts (92% and 91% respectively) were formed with dendrites and spines. In weaver mutant mice, the majority of contacts (87%) were also with dendrites and spines, but the proportion of axosomatic contacts was double that found in normal animals. The proportions of contacts that displayed junctional membrane specializations in single sections were 27% in wild-type mice, 29% in weaver heterozygotes, and 17% in homozygous weaver mutants. Taking into consideration that the plane of the section might not always have included the synaptic specialization, a stereological formula was applied. It was estimated that 85–89% of the contacts may be truly junctional in the striatum of normal and heterozygous mice, whereas only 53% may be junctional in the striatum of weaver homozygotes. The reduced incidence of junctional synapses in weaver homozygotes may suggest either inadequate synaptogenesis, or an early loss of synapses after their formation, or both. Further, the increased incidence of axosomatic contacts may be indicative of synaptic immaturity, as such contacts are commonly seen in early developmental stages. Our results support the developmental nature of the nigrostriatal deficit in weaver mutants, since the synaptic investment of striatal neuronal elements by dopamine afferents appears to be immature at the time when nigrostriatal synaptogenesis is normally complete.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Ventral mesencephalic anlagen survive following grafting to the striatum of weaver mutant mice and reinnervate the dopamine-depleted basal ganglia of the recipients. The aim of the present study was to examine the pattern of connectivity established by graft-deriving dopamine afferents in the host striatum. Grafts were obtained from normal embryos at a gestational age of 14–15 days and implanted into a surgical cavity overlying the dorsal striatum of adult weaver recipients. Tissue was processed for electron microscopic immunocytochemistry using a primary antiserum against tyrosine hydroxylase. At the time of examination, recipient weaver mutants were 8.5 months old and the grafts had survived for 4.5 months. Grafts were found to contain an estimated 100–1000 tyrosine hydroxylase immunoreactive neurons. Tyrosine hydroxylase immunoreactive fibres, displaying characteristic varicosities, innervated the dorsal striatum to a depth of 1000 µm. In the non-grafted striatum, 8% of the contacts of tyrosine hydroxylase immunoreactive nerve terminals were junctional. That proportion contrasted with the corresponding value of normal animals, which is 27%. In the grafted striatum, 29% of the contacts were junctional. That percentage approximated the value found in normal animals. By applying a stereological correction, it can be estimated from those numbers that thetrue proportion of junctional contacts in the non-grafted striatum of 8.5-month-old mutants may be 26%, whereas that in the grafted side may be 91%, which is close to the normal situation. The majority of contacts in the reinnervated striatum (84%) were made with dendrites and spines. However, the proportion of total axosomatic contacts in the reinnervated striatum was twice as high as that found in the striatum of normal animals, and the proportion of junctional synapses was three times higher than that found normally. We conclude that: (1) in spite of a genetically determined degenerative process, the dorsal neostriatum of weaver mutant mice is receptive to synaptic investment by dopamine afferents originating in normal donor tissue. (2) In repopulating the denervated weaver striatum, graft-deriving dopamine afferents display a connectional selectivity, i.e. they establish synaptic relations preferentially with those cellular domains that are normally innervated by dopamine nerve terminals. In this context, it is possible that dopamine fibres originating in the grafts invest postsynaptic sites that had either been vacated from the intrinsic dopamine input or had never received such an input. (3) The striatal connectivity following transplantation may retain features of immaturity as suggested by the increased incidence of axosomatic contacts, a feature of the developing nigrostriatal projection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...