Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 15 (1989), S. 167-170 
    ISSN: 1432-0983
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 2 (1980), S. 79-85 
    ISSN: 1432-0983
    Keywords: Meiosis ; Recombination ; DNA ; Saccharomyces
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In meiotic cells of Saccharomyces cerevisiae, reduction in molecular weights of DNA in alkaline sucrose gradients is observed concomittantly with premeiotic DNA replication and with commitment to recombination. Following the completion of the latter processes, higher molecular weights are obtained. These single-stranded breaks are found in both old and newly synthesised strands. Similar scissions in DNA are also found in a temperature-sensitive mutant (cdc40/cdc40), which does not undergo commitment to recombination at the restrictive temperature, and in vegetative wild type cells that were previously exposed to sporulation medium. The suggestion that these scissions are the physical manifestation of commitment to recombination is therefore rejected.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; CDC40 ; DNA repair ; Cloning ; Mapping
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The cdc40 mutation has been previously shown to be a heat-sensitive cell-division-cycle mutation. At the restrictive temperature, cdc40 cells arrest at the end of DNA replication, but retain sensitivity to hydroxyurea (Kassir and Simchen 1978). The mutation has also been shown to affect commitment to meiotic recombination and its realization. Here we show that mutant cells are extremely sensitive to Methyl-Methane Sulfonate (MMS) when the treatment is carried out at restrictive temperature. Incubation at 37 °C prior to, or after MMS treatment at 23 °C, does not result in lower survival. It is concluded that the CDC40 gene product has a role in DNA repair, possibly holding together or protecting the DNA during the early stages of repair. The CDC40 gene was cloned on a 2.65 kb DNA fragment. A 2 μ plasmid carrying the gene was integrated and mapped to chromosome IV, between trp4 and ade8, by the method of marker loss. Conventional tetrad analysis has shown cdc40 to map 1.7 cM from trp4.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A diploid strain of yeast, homozygous for the mutation cdc5-1, undergoes a normal meiosis at 25° C. At the nonpermissive temperature of 34° C, meiosis is arrested at the first meiotic division, after premeiotic DNA replication and recombination commitment have taken place. Haploidisation commitment does not occur at 34° C. Electron microscopy reveals that synaptons (synaptonemal complexes) are formed and the stage of arrest is characterised by a prevalence of “modified synaptons”, which consist of paired lateral elements lacking the central elements. Prolonged incubation at this stage of arrest results in unusually high recombination levels, perhaps related to the synaptonal structures observed. Temperature shift-up experiments (transfers of cells from 25° C to 34° C at various times during meiosis) reveal that the CDC5 function is required for both the first and the second divisions of meiosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 180 (1980), S. 315-322 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary SAD (suppressor of a deficiencies) is a mutation that allows α-mater diploids such as α/α or a1-/α strains to sporulate. This mutation is unstable and reverts to wildtype (sad +) even in strains homozygous for SAD. SAD is dominant to sad +: α/α and a1-/α sad 1/SAD diploids are sporulation-proficient. SAD is located on chromosome III, 40 cM distal to the mating type locus, between THR4 and HMR a. The ability of SAD to support sporulation requires the presence of an α mating type locus with an active α2 function. Possible models for the action of SAD are (1) SAD bypasses the need for a1 function in sporulation, and (2) SAD provides a1 function to MAT a1- mutants by supplying a1 function itself, for example, by allowing expression of a silent copy of MAT a.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 375-384 
    ISSN: 1617-4623
    Keywords: Regulation of meiosis ; Saccharomyces cerevisiae ; IME1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MATα2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Imel protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to α-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 244 (1994), S. 160-167 
    ISSN: 1617-4623
    Keywords: p51ferT ; Yeast ; Meiosis ; Phosphotyrosine Kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The FER locus of the mouse encodes two mRNA species: one is constitutively transcribed, giving rise to a 94 kDa tyrosine kinase (p94ferT); the second is a meiosis-specific RNA that gives rise to a 51 kDa tyrosine kinase (p51ferT). The p51ferT RNA and protein accumulate in primary spermatocytes that are in prophase of the first meiotic division. By using polyclonal antibodies directed against synthetic peptides derived from the unique amino-terminus of the mouse p51ferT, a 51 kDa phosphotyrosyl protein — p51y — was identified in Saccharomyces cerevisiae. The p51y protein is constitutively expressed in yeast, but in meiotic cells, concomitantly with commitment to meiotic recombination, its level of phosphorylation on tyrosine residues is increased. A different pattern of phosphorylation is observed on serine residues: at early meiotic times the level is decreased, while in later meiotic time the level increases, reaching the vegetative level. When p51ferT is ectopically expressed in yeast, it is active, leading to preferential phosphorylation of an approx. 65 kDa protein. A similar pattern of phosphorylation by p51ferT is seen in mammalian cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1617-4623
    Keywords: CDC40 ; DNA replication ; Mitotic spindle assembly ; cyclins ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Successful progression through the cell cycle requires the coupling of mitotic spindle formation to DNA replication. In this report we present evidence suggesting that, inSaccharomyces cerevisiae, theCDC40 gene product is required to regulate both DNA replication and mitotic spindle formation. The deduced amino acid sequence ofCDC40 (455 amino acids) contains four copies of a β-transducin-like repeat. Cdc40p is essential only at elevated temperatures, as a complete deletion or a truncated protein (deletion of the C-terminal 217 amino acids in thecdc40-1 allele) results in normal vegetative growth at 23°C, and cell cycle arrest at 36°C. In the mitotic cell cycle Cdc40p is apparently required for at least two steps: (1) for entry into S phase (neither DNA synthesis, nor mitotic spindle formation occurs at 36°C and (2) for completion of S-phase (cdc40::LEU2 cells cannot complete the cell cycle when returned to the permissive temperature in the presence of hydroxyurea). The role of Cdc40p as a regulatory protein linking DNA synthesis, spindle assembly/maintenance, and maturation promoting factor (MPF) activity is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 144 (1976), S. 21-27 
    ISSN: 1617-4623
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Hydroxyurea (HU) inhibits the premeiotic DNA replication and the meiotic events that follow, namely readiness, recombination commitment, haploidisation, sporulation commitment and ascus formation. Short incubations with HU (2–4 hrs) during the premeiotic replication (i.e. starting between 3 and 6.5 hrs in sporulation medium) allow the resumption of the replication at a normal rate following the removal of the drug. The other meiotic events are similarly delayed by the approximate length of the treatment. In these experiments, intragenic recombination in ade2 reached a higher level than in the controls (x1.3–2.0 in one pair of heteroalleles and x3.0–4.0 in another pair). The recombination response to short HU treatments was not observed for a pair of heteroalleles in ade2 that normally shows a high level of meiotic recombination (750 per 106 cells), nor was the response observed in a pair of heteroalleles in lys2. HU treatments have almost no effect on sporulating cells from 8 hrs onwards. At 7–7.5 hrs the meiotic cells are very sensitive to the drug and even short treatments cause cell death and massive DNA degradation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    Developmental Genetics 15 (1994), S. 139-147 
    ISSN: 0192-253X
    Keywords: IME1 ; meiosis ; transcriptional activator ; S. cerevisiae ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Previous studies have shown that the IME1 gene is required for sporulation and the expression of meiosis specific genes in Saccharomyces cerevisiae. However, sequence analysis has not revealed the precise functional role of the Ime1 protein. By engineering constructs which express various portions of the Ime1p fused to either the DNA binding or transcriptional activation domains of GAL4, we have conclusively demonstrated that IME1 is a transcription factor, apparently required for sporulation to activate the transcription of meiosis specific genes. The full Ime1p, when fused to the GAL4 DNA binding domain, can both activate GAL1-IacZ expression, and complement Ime1-0 (a null allele) for the ability to sporulate, and transcriptionally activate IME2, a meiosis specific gene. As successively larger portions of the encoded Ime1p N-terminus are deleted from the GAL4(bd)-IME1 construct, the encoded fusion proteins retain the ability to complement an ime1 null allele, despite a decreasing ability to activate GAL1-lacZ transcription. However, a fusion construct which retains only the last 45 C-terminal amino acids of IME1 provides neither transcriptional activation of GAL1-lacZ nor complementation of ime1-0. Fusion of a GAL4 activation domain to this portion of IME1, results in a construct with a restored ability to complement an ime1-0 cllele. This restored ability is dependent upon galactose induction. We conclude, therefore, that IME1 functions in meiosis as a transcriptional activator. © 1994 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...