Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2022
  • 2005-2009  (2)
  • 1995-1999  (29)
  • 1955-1959
  • 1925-1929
  • 1890-1899
  • 1840-1849
  • 2006  (2)
  • 1997  (29)
  • 1841
  • biodegradation
  • 1
    ISSN: 1572-9729
    Keywords: biodegradation ; Burkholderia ; fenitrothion ; mpd gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A short rod shaped, gram-negative bacterium strain Burkholderia sp. FDS-1 was isolated from the sludge of the wastewater treating system of an organophosphorus pesticides manufacturer. The isolate was capable of using fenitrothion as the sole carbon source for its growth. FDS-1 first hydrolyzed fenitrothion to 3-methyl-4-nitrophenol, which was further metabolized to nitrite and methylhydroquinone. The addition of other carbon source and omitting phosphorus source had little effect on the hydrolysis of fenitrothion. The gene encoding the organophosphorus hydrolytic enzyme was cloned and sequenced. The sequence was similar to mpd, a gene previously shown to encode a parathion-methyl-hydrolyzing enzyme in Plesiomonas sp. M6. The inoculation of strain FDS-1 (106 cells g−1) to soil treated with 100 mg fenitrothion emulsion kg−1 resulted in a higher degradation rate than in noninoculated soils regardless of the soil sterilized or nonsterilized. These results highlight the potential of this bacterium to be used in the cleanup of contaminated pesticide waste in the environment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 17 (2006), S. 207-217 
    ISSN: 1572-9729
    Keywords: biodegradation ; DGGE ; K2Ni(CN)4 soil bacterial populations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Metal cyanides are significant contaminants of many soils found at the site of former industrial activity. In this study we isolated bacteria capable of degrading ferric ferrocyanide and K2Ni(CN)4. One of these bacteria a Rhodococcus spp. was subsequently used to bioaugment a minimal medium broth, spiked with K2Ni(CN)4, containing 1 g of either an uncontaminated topsoil or a former coke works site soil. Degradation of the K2Ni(CN)4 was observed in both soils, however, bioaugmentation did not significantly impact the rate or degree of K2Ni(CN)4 removal. Statistical analysis of denaturing gradient gel electrophoresis profiles showed that the topsoil bacterial community had a higher biodiversity, and its structure was not significantly affected by either K2Ni(CN)4 or bioaugmentation. In contrast, profiles from the coke works site indicated significant changes in the bacterial community in response to these additions. Moreover, in both soils although bioaugmentation did not affect rates of biodegradation the Rhodococcus spp. did become established in the communities in broths containing both top and coke works soil. We conclude that bacterial communities from contaminated soils with low biodiversity are much more readily perturbed through interventions such as contamination events or bioaugmentation treatments and discuss the implications of these findings for bioremediation studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 15-19 
    ISSN: 1572-9729
    Keywords: biodegradation ; crude oil ; hexadecane ; phenanthrene ; sorbent
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Urea-formaldehyde polymer is currently used as asorbent for containment and clean up of hydrocarbons. The aerobic biodegradability of this polymer andhydrocarbons sorbed to the polymer were tested. Soilmicroorganisms readily grew on the polymer, and twoorganisms, a bacterium and a fungus, capable of growthon the polymer were isolated. However, biodegradationof the polymer was very slow and possibly incomplete. Biodegradation of the polymer was evident as a changein appearance of the polymer, but disappearance of thepolymer was not detectable in liquid culturesincubated for six months or soil cultures incubatedfor one month. Destruction of the polymer by soilmicroorganisms at ambient temperature does not appearto be practical. Degradation of 14C-labeledhexadecane and phenanthrene mixed with crude oil inliquid cultures inoculated with soil microorganismswas used as an estimate of general hydrocarbondegradation. When nitrogen was not limiting, therates of hexadecane and phenanthrene degradation werethe same, whether those hydrocarbons were sorbed tothe polymer or not sorbed. When nitrogen waslimiting, the polymer stimulated the rate ofhexadecane degradation but not the rate ofphenanthrene degradation. The polymer may stimulatehexadecane degradation by serving as a source ofnitrogen. However, optimal degradation of sorbedhydrocarbons requires nitrogen addition. The resultssuggest that it may be feasible to decontaminate spentpolymer by biodegradation of sorbed hydrocarbons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9729
    Keywords: Alcaligenes denitrificans ; biodegradation ; chloroaromatic ; mecoprop (R)-(+)-2(2-methyl-4-chlorophenoxy)propionic acid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An Alcaligenes denitrificans strain capable of utilizing theherbicide (R)-(+)-2(2-methyl-4-chlorophenoxy)propionicacid (mecoprop) as a sole carbon source was isolated fromsoil and cultured in liquid medium. Crude cell extracts of thebacterium were utilized in spectrophotometric assays toelucidate a biochemical pathway for degradation ofmecoprop. Results indicated a reaction sequence analogousto the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D).GC-MS analysis provided direct evidence for thebiotransformation of mecoprop to the transient metabolite4-chloro-2-methylphenol (MCP). No NADPH-dependentactivity was observed during this reaction. Pyruvate wasverified as the second product derived from the aliphatic sidechain of mecoprop. MCP was subsequently transformed to asubstituted catechol by an NADPH-dependentmonooxygenase. When grown on mecoprop, A.denitrificans was adapted to oxidize catechol and its 4- and3-methylated derivatives indicating the broad substratespecificity of catechol dioxygenase. The microorganism wasdemonstrated to adopt the ortho mechanism of aromaticcleavage which resulted in the formation of2-methyl-4-carboxymethylene but-2-en-4-olide, a reactionintermediate of the β-ketoadipate pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 167-175 
    ISSN: 1572-9729
    Keywords: benzene ; bioavailability ; biodegradation ; naphthalene ; sorption ; toluene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Aerobic biodegradation of benzene, toluene andnaphthalene was studied in pre-equilibrated soil-waterslurry microcosms. The experiments were designed tosimulate biodegradation at waste sites where sorptionreaches equilibrium before biodegradation becomesimportant. Rates of biodegradation were reduced by thepresence of soil. For example, nearly completenaphthalene biodegradation (1.28 mg/L) by indigenoussoil bacteria occurred within 60 hours in aqueoussolution (soil-free) while it took two weeks todegrade the same amount in the presence of 0.47 kgsoil/L of water. The rate of biodegradation wasobserved to decrease with increasing organic compoundhydrophobicity, soil/water ratio, soil particle size,and soil organic carbon content. These resultsclearly indicate that the rate of biodegradation isaffected by both the extent and rate of sorption. Further analysis suggests that mass transfer couldcontrol the performance of in situ bioremediation forhighly hydrophobic organic contaminants which exhibita large extent of sorption and slow rate ofdesorption.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1572-9729
    Keywords: biodegradation ; PCB ; Aroclor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Orange peels, eucalyptus leaves, pine needles and ivy leaves were addedseparately to soil spiked with Aroclor 1242 (100 mgkg-1.Polychorinated biphenyls (PCBs) disappeared after six months in all theamended soils, but not in unamended soils. Although biphenyl was not addedto any of the soils, all four amended soils had much higher levels(108/g) of biphenyl-utilizing bacteria than the unamendedcontrol (103/g). Ten random isolates obtained from these soilswere identified as coryneform bacteria. Five isolates, that were distinctlydifferent, were studied further with respect to growth on pure terpenes andmetabolism of PCBs. The most effective strains were Cellulomonas sp. T109and R. rhodochrous T100, which metabolized 83% and 80% ofAroclor 1242, respectively, during a six day period of growth on cymene andlimonene, respectively. The bphA gene, cloned as a 2.8 Kb Sa/I fragment ofpAW6194 from cbpA (Walia et al. 1990) hybridized to total DNA of allcoryneform isolates, and to the well-established PCB degrader Rhodococcusgloberulus. In contrast, a 5 Kb XhoI-SmaI fragment of the bphA gene(Furukawa & Miyazaki 1986) did not show any homology to the genomic DNAof any of the isolates or to R. globerulus, but did hybridize to two otherwell-known PCB degraders Pseudomonas sp. LB400, and Alcaligenes eutrophusH850. The data presented herein indicate that terpenes may be naturalsubstrates for biphenyl-degrading bacteria and may enhance substantialtransformation of Aroclor 1242.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9729
    Keywords: natural attenuation ; biodegradation ; hydrocarbon ; groundwater ; BTEX ; MTBE ; site characterization ; fate and transport
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract After eighteen months of active remediation at a JP-4 jet-fuel spill, aresidual of unremediated hydrocarbon remained. Further site characterizationwas conducted to evaluate the contribution of natural attenuation to controlexposure to hazards associated with the residual contamination in thesubsurface. Activities included the detailed characterization ofground-water flow through the spill; the distribution of fuel contaminantsin groundwater; and the analysis of soluble electron acceptors moving intothe spill from upgradient. These activities allowed a rigorous evaluation ofthe transport of contaminants from the spill to the receptor of groundwater,the Pasquotank River. The transport of dissolved contaminants of concern,that is benzene, toluene, ethyl benzene, xylene isomers (BTEX) andmethyl-tertiary-butyl ether (MTBE), into the river from the source area wascontrolled by equilibrium dissolution from the fuel spill to the adjacentgroundwater, diffusion in groundwater from the spill to permeable layers inthe aquifer, and advective transport in the permeable layers. The estimatedyearly loading of BTEX compounds and MTBE into the receptor was trivial evenwithout considering biological degradation. The biodegradation ofhydrocarbon dissolved in groundwater through aerobic respiration,denitrification, sulfate reduction, and iron reduction was estimated fromchanges in ground-water chemistry along the flow path. The concentrations oftarget components in permanent monitoring wells continue to decline overtime. Long term monitoring will ensure that the plume is under control, andno further active remediation is required.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 297-311 
    ISSN: 1572-9729
    Keywords: benzothiophenes ; biodegradation ; biodesulfurization ; dibenzothiophenes ; thiacycloalkanes ; thiophenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sulfur heterocycles are common constituents ofpetroleum and liquids derived from coal, and they arefound in some secondary metabolites of microorganismsand plants. They exist primarily as saturated ringsand thiophenes. There are two major objectives drivinginvestigations of the microbial metabolism oforganosulfur compounds. One is the quest to develop aprocess for biodesulfurization of fossil fuels, andthe other is to understand the fates of organosulfurcompounds in petroleum- or creosote-contaminatedenvironments which is important in assessingbioremediation processes. For these processes to besuccessful, cleavage of different types of sulfurheterocyclic rings is paramount. This paper reviewsthe evidence for microbial ring cleavage of a varietyof organosulfur compounds and discusses the fewwell-studied cases which have shown that the C–S bondis most susceptible to breakage leading to disruptionof the ring. In most cases, the introduction of one ormore oxygen atom(s) onto the adjacent C atom and/oronto the S atom weakens the C–S bond, facilitating itscleavage. Although much is known about the thiophenering cleavage in dibenzothiophene, there is still agreat deal to be learned about the cleavage of othersulfur heterocycles.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1572-9729
    Keywords: biodegradation ; cometabolism ; nongrowth substrate ; conventional carbon sources ; inhibition ; pH regulation ; toxicity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The enhancement of biodegradation of phenol and4-chlorophenol (4-cp) as a cometabolised compound byPseudomonas putida ATCC 49451 was accomplishedby augmenting the medium with conventional carbonsources such as sodium glutamate and glucose. Comparedwith phenol as the sole carbon source, the addition of1 gl-1 sodium glutamate increased the toxicitytolerance of cells toward 4-cp and significantlyimproved the biodegradation rates of both phenol and4-cp even when the initial concentration of 4-cp wasas high as 200 mgl-1. On the other hand,supplementation of glucose caused a significant dropin the medium pH from 7.2 to 4.3 resulting in areduction of degradation rate, leaving a considerableamount of 4-cp undegraded when the initialconcentration of 4-cp was higher than 100 mgl-1.By regulating the pH of the medium, however,enhancement of degradation rates of phenol and 4-cp inthe presence of glucose was achieved with aconcomitant complete degradation of phenol and 4-cp.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 349-356 
    ISSN: 1572-9729
    Keywords: biodegradation ; bioremediation ; acclimation ; Everglades ; mineralization ; nitrophenol ; soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The Everglades in South Florida are a unique ecologicalsystem. As a result of the widespread use of pesticides andherbicides in agricultural areas upstream from these wetlands,there is a serious potential for pollution problems in theEverglades. The purpose of this study was to evaluate theability of indigenous microbial populations to degradexenobiotic organic compounds introduced by agricultural andother activities. Such biodegradation may facilitate theremediation of contaminated soils and water in the Everglades.The model compound selected in this study is 4-nitrophenol, achemical commonly used in the manufacture of pesticides. Themineralization of 4-nitrophenol at various concentrations wasstudied in soils collected from the Everglades. Atconcentrations of 10 and 100 µg/g soil, considerablemineralization occurred within a week. At a higherconcentration, i.e., 10 mg/g soil, however, no mineralizationof 4-nitrophenol occurred over a 4-month period; such a highconcentration apparently produced an inhibitory effect. Therate and extent of 4-nitrophenol mineralization was enhancedon inoculation with previously isolated nitrophenol-degradingmicroorganisms. The maximum mineralization extent measured,however, was less than 30% suggesting conversion to biomassand/or unidentified intermediate products. These resultsindicate the potential for natural mechanisms to mitigate theadverse effects of xenobiotic pollutants in a complex systemsuch as the Everglades.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 357-361 
    ISSN: 1572-9729
    Keywords: alkylpyridine ; subsurface bacteria ; biodegradation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Ten bacterial strains were isolated fromalkylpyridine polluted sediments 7.6 m below thesurface. These strains were able to degrade 11different alkylpyridine isomers. Degradation ratesdepended on number and position of the alkyl group. Isomers with an alkyl group at position 3 were moreresistant to microbial attack. Of the 10 strains, 6isolates were selected for detailed study. Theseisolates mineralized the isomers to CO2,NH4 +, and biomass. All strains weregram-negative rods with a strict aerobic metabolism. Characterization of physiological and biochemicalproperties revealed similarity between strains. Eeachstrain however, had a limited substrate range whichenabled it to degrade no more than 2 to 3 compounds ofthe 14 alkylpyridine isomers tested. Examination ofthe genetic variability among cultures with therandomly amplified polymorphic DNA technique revealedhigh levels of genomic DNA polymorphism. The highestsimilarity between 2 strains (0.653) was observedbetween 2-picoline and 3-picoline degrading cultures. The molecular basis of the differences in substratespecificity is under investigation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 287-296 
    ISSN: 1572-9729
    Keywords: asphaltene ; bioavailability ; biodegradation ; crude oil ; diffusivity ; modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Crude oil is a complex mixture ofseveral different structural classes of compoundsincluding alkanes, aromatics, heterocyclic polarcompounds, and asphaltenes. The rate and extent ofmicrobial degradation of crude oil depends on theinteraction between the physical and biochemicalproperties of the biodegradable compounds and theirinteractions with the non-biodegradable fraction. Inthis study we have systematically altered theconcentration of non-biodegradable material in thecrude oil and analyzed its impact on transport of thebiodegradable components of crude oil to themicroorganisms. We have also developed a mathematicalmodel that explains and accounts for the dependence ofbiodegradation of crude oil through a putativebioavailability parameter. Experimental resultsindicate that as the asphaltene concentration in oilincreases, the maximum oxygen uptake in respirometersdecreases. The mathematically fitted bioavailabilityparameter of degradable components of oil alsodecreases as the asphaltene concentration increases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1572-9729
    Keywords: biodegradation ; BTEX ; kerosene ; residual concentration ; volatilisation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A mixed bacterial culture capable of biodegrading of jet fuel was isolated from a heavily polluted site in Tapa, Estonia. Residual concentrations of pollutants in the chemostat culture were determined. The total residual concentrations of dissolved jet fuel in culture medium were 0.42 and 2.1 μg l-1 at the dilution rates 0.1 and 0.17 h-1respectively. Benzene, toluene, ethylbenzene, and xylenes were completely degraded and thus not detected in culture broth (detection limit 0.1 μg l-1)at the dilution rates 0.1 and 0.17 h-1. The values of apparent substrate saturation constant(KSapp) in multisubstrate growth conditions were estimated from the experimental data. The residual concentrations satisfy the regulations in the Republic of Estonia for petroleum hydrocarbons (0.00 mg l-1 – ‘very good’). Results obtained indicate that use of the biodegradation could be sufficient for the treatment of polluted with kerosene-type jet fuel groundwater up to the acceptable quality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 371-377 
    ISSN: 1572-9729
    Keywords: biodegradation ; dehalogenase ; monochloroacetate ; Pseudomonas sp
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract This study reports the isolation of Pseudomonas sp strains with monochloroacetate (MCA) degradation function, from uncontaminated soil, and the use of Southern blot hybridization technique to detect MCA degrading catabolic genes and their divergence. Based on their capacity to remove Cl- from MCA in a minimal medium containing 185 ppm Cl-, the strains were classified into three groups: poor degraders (Cl- release between 0–15 ppm), medium degraders (Cl- release between 16–30 ppm), and high degraders (Cl- release between 31–45 ppm).We have applied a gene probe assay for determining the diversity of MCA degradative genotypes of 61 strains. Two different gene probes, dehCI and dehCII were used in Southern blot hybridization assays. Majority of the DNA samples that produced signals on the membrane blots (18 out of 24)hybridized with only dehCI DNA probe, while 6strains hybridized with only dehCII probe. On the other hand, 37 isolates did not hybridize to either of the gene probes used. The results indicated the high specificity of the DNA hybridization method and the divergence of metabolic functions and/or genotypes among the native MCA-degrading Pseudomonas sp. populations in the soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Biodegradation 8 (1997), S. 401-417 
    ISSN: 1572-9729
    Keywords: bioavailability ; biodegradation ; bioremediation ; mass transfer ; soil sanitation ; surfactants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Biodegradation of hydrophobic organic compounds in polluted soil is a process involving interactions among soil particles, pollutants, water, and micro-organisms. Surface-active agents or surfactants are compounds that may affect these interactions, and the use of these compounds may be a means of overcoming the problem of limited bioavailability of hydrophobic organic pollutants in biological soil remediation. The effects of surfactants on the physiology of micro-organisms range from inhibition of growth due to surfactant toxicity to stimulation of growth caused by the use of surfactants as a co-substrate. The most important effect of surfactants on the interactions among soil and pollutant is stimulation of mass transport of the pollutant from the soil to the aqueous phase. This can be caused by three different mechanisms: emulsification of liquid pollutant, micellar solubilisation, and facilitated transport. The importance of these mechanisms with respect to the effect of surfactants on bioavailability is reviewed for hydrophobic organic pollutants present in different physical states. The complexity of the effect of surfactants on pollutant bioavailability is reflected by the results in the literature, which range from stimulation to inhibition of desorption and biodegradation of polluting compounds. No general trends can be found in these results. Therefore, more research is necessary to make the application of surfactants a standard tool in biological soil remediation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1572-9729
    Keywords: biodegradation ; PAH ; phenanthrene ; pyrene ; bioremediation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of several bioremediation stimulants, including potentialmetabolism pathway inducers, inorganic/organic nutrients, and surfactants onthe metabolism of phenanthrene and pyrene, as well as the populationdynamics of PAH degrading microorganisms was examined in five soils withdiffering background PAH concentrations, exposure histories and physicalproperties. Most of the supplements either had no significant effect ordecreased the mineralization of [14C]-phenanthrene and[14C]-pyrene in soil slurry microcosms. The effect of aparticular supplement, however, was often not uniform within or acrosssoils. Decreased mineralization of [14C]-phenanthrene and[14C]-pyrene was usually due to either preferential use of thesupplement as carbon source and/or stimulation of non-PAH degradingmicroorganisms. Many of the supplements increased populations ofheterotrophic microorganisms, as measured by plate counts, but did notincrease populations of phenanthrene degrading microorganisms, as measuredby the [14C]-PAH mineralization MPN analysis or cellularincorporation of [14C]-PAH. These results suggest that the PAHdegrading community at each site may be unique in their response tomaterials added in an attempt to stimulate PAH degradation. Thecharacteristics of the site, including exposure history, soil type, andtemporal variation may all influence their response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 2221-2229 
    ISSN: 0887-624X
    Keywords: biodegradation ; hydrogels ; crosslinking agent ; sucrose diacrylate ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A series of degradable hydrogels based on different vinyl monomers such as acrylamide, sucrose-1′-acrylate, and acrylic acid were synthesized using sucrose-6,1′-diacrylate (SDA) as a crosslinking agent. SDA was prepared by enzymatic transesterification of vinyl acrylate with sucrose in pyridine. Base catalyzed hydrolysis of SDA in aqueous solution was studied as a function of pH. As expected, hydrolysis of SDA was faster at higher pHs such that poly(acrylamide), poly(sucrose 1′-acrylate), and poly(acrylic acid) hydrogels underwent substantial degradation at and above pH 7, 9, and 13, respectively. The degradation was characterized by changes in the swelling ratios of the hydrogels indicating breakage of the crosslinking agent. Degradation of the hydrogels at their chemically stable pHs was studied in presence of enzymes. Enzymes, including pepsin and a fungal Lipase, were able to degrade the poly(acrylamide) hydrogel at pH 4 and 5, respectively. Poly(acrylic acid) hydrogel was degraded in presence of a fungal protease at pH 7.8. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2221-2229, 1997
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 3553-3559 
    ISSN: 0887-624X
    Keywords: hyaluronic acid ; crosslinking ; glutaraldehyde ; biodegradation ; IR spectra ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Hyaluronic acid (HA) was chemically crosslinked with glutaraldehyde (GA) to produce water-insoluble films having low water contents when brought into contact with water. The crosslinking reaction was performed using uncrosslinked HA films in acetone-water mixtures. This method could produce water-insoluble HA films with water contents as low as 60 wt % when subjected to swelling with phosphate-buffered saline of pH 7.4 at 37°C. This 60 wt % water content was lower than any values for HA ever reported. There was an optimal HCl concentration around 0.01N for the HA crosslinking with GA in acetone - water mixtures. To get information on the crosslinking mechanism, alginic acid, which possesses hydroxyl and carboxyl groups in one molecule, similar to HA, and poly(vinyl alcohol) (PVA) and amylopectin, which possess only hydroxyl groups, were subjected to crosslinking with GA. PVA and amylopectin were also found to become water-insoluble after reaction with GA. On the basis of the infrared spectra of these crosslinked films, it was concluded that intermolecular formation of hemiacetal bonds with GA between the hydroxyl groups belonging to different HA molecules led to crosslinking. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3553-3559, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1573-0972
    Keywords: Adherence ; biodegradation ; biosurfactants ; marine bacterium ; n -alkane ; temperature effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Three hydrocarbon uptake modes (adherence, emulsification and solubilization) were identified and quantified in cells and supernatants of a mesophilic marine bacterium Pseudomonas nautica strain 617 grown on eicosane. The adherence capacity was related to the enrichment of cells with wax esters and glycolipids. The emulsifying activity was related to the presence of extracellular biosurfactants composed of proteins, carbohydrates and lipids (35:63:2). The intensity of substrate uptake modes was sensitive to temperatures currently found in the original environment of P. nautica (16°C, 20°C and 32°C). When temperature decreased, a significant increase in adherence and emulsifying activity was observed in relation to biochemical changes, whereas solubilizing activity decreased. The marine bacterium was able to degrade 53–59% eicosane at the end of exponential growth after 13, 5 and 3 days incubation at 16°C, 20°C and 32°C respectively.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 13 (1997), S. 659-663 
    ISSN: 1573-0972
    Keywords: Arthrobacter ; biodegradation ; competitive inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The Arthrobacter species can degrade phenol, o-cresol and p-cresol much faster (as reflected in high specific growth rates) than other microbes which are reported to degrade toxic compounds. In mixtures, phenol and p-cresol mutually inhibited each other; the inhibition constants show that phenol degradation is strongly inhibited in the presence of p-cresol rather than reverse. o-Cresol enhanced phenol degradation marginally but o-cresol degradation was not affected by the presence of phenol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 243-252 
    ISSN: 0006-3592
    Keywords: carbon dioxide evolution rate ; mass transfer ; modeling ; biodegradation ; pH ; kinetics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Respirometry is a precious tool for determining the activity of microbial populations. The measurement of oxygen uptake rate is commonly used but cannot be applied in anoxic or anaerobic conditions or for insoluble substrate. Carbon dioxide production can be measured accurately by gas balance techniques, especially with an on-line infrared analyzer. Unfortunately, in dynamic systems, and hence in the case of short-term batch experiments, chemical and physical transfer limitations for carbon dioxide can be sufficient to make the observed carbon dioxide evolution rate (OCER) deduced from direct gas analysis very different from the biological carbon dioxide evolution rate (CER).To take these transfer phenomena into account and calculate the real CER, a mathematical model based on mass balance equations is proposed. In this work, the chemical equilibrium involving carbon dioxide and the measured pH evolution of the liquid medium are considered. The mass transfer from the liquid to the gas phase is described, and the response time of the analysis system is evaluated.Global mass transfer coefficients (KLa) for carbon dioxide and oxygen are determined and compared to one another, improving the choice of hydrodynamic hypotheses. The equations presented are found to give good predictions of the disturbance of gaseous responses during pH changes.Finally, the mathematical model developed associated with a laboratory-scale reactor, is used successfully to determine the CER in nonstationary conditions, during batch experiments performed with microorganisms coming from an activated sludge system. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 243-252, 1997.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 163-169 
    ISSN: 0006-3592
    Keywords: bioreactor ; paint stripper solvents ; biodegradation ; model ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. We have developed a modified gas lift loop bioreactor employing a defined consortium of Rhodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to Monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 163-169, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 0006-3592
    Keywords: nitrifying bacteria ; Nitrosomonas europaea ; cometabolism ; ammonia monooxygenase ; biodegradation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Pure cultures of ammonia-oxidizing bacteria, Nitrosomonas europaea, were exposed to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), chloroform (CF), 1,2-dichloroethane (1,2-DCA), or carbon tetrachloride (CT), in the presence of ammonia, in a quasi-steady-state bioreactor. Estimates of enzyme kinetics constants, solvent inactivation constants, and culture recovery constants were obtained by simultaneously fitting three model curves to experimental data using nonlinear optimization techniques and an enzyme kinetics model, referred to as the inhibition, inactivation, and recovery (IIR) model, that accounts for inhibition of ammonia oxidation by the solvent, enzyme inactivation by solvent product toxicity, and respondent synthesis of new enzyme (recovery). Results showed relative enzyme affinities for ammonia monooxygenase (AMO) of 1,1-DCE ≈ TCE 〉 CT 〉 NH3 〉 CF 〉 1,2-DCA. Relative maximum specific substrate transformation rates were NH3 〉 1,2-DCA 〉 CF 〉 TCE ≈ 1,1-DCE 〉 CT (=0). The TCE, CF, and 1,1-DCE inactivated the cells, with 1,1-DCE being about three times more potent than TCE or CF. Under the conditions of these experiments, inactivating injuries caused by TCE and 1,1-DCE appeared limited primarily to the AMO enzyme, but injuries caused by CF appeared to be more generalized. The CT was not oxidized by N. europaea while 1,2-DCA was oxidized quite readily and showed no inactivation effects. Recovery capabilities were demonstrated with all solvents except CF. A method for estimating protein yield, the relationship between the transformation capacity model and the IIR model, and a condition necessary for sustainable cometabolic treatment of inactivating substrates are presented. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 54: 520-534, 1997.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 55 (1997), S. 727-736 
    ISSN: 0006-3592
    Keywords: acetate ; anaerobic ; biodegradation ; formaldehyde ; methanogenic ; toxicity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Formaldehyde is present in several industrial wastewaters including petrochemical wastes. In this study, the toxicity and degradability of formaldehyde in anaerobic systems were investigated. Formaldehyde showed severe toxicity to an acetate enrichment methanogenic culture. As low as 10 mg/L (0.33 mM) of formaldehyde in the reactor completely inhibited acetate utilization. Formaldehyde, however, was degraded while acetate utilization was inhibited. Degradation of formaldehyde (Initial concentration ≤30 mg/L) followed Monod model with a rate constant, k, of 0.35-0.46 d-1. At higher initial concentrations (≥60 mg/L), formaldehyde degradation was inhibited and partial degradation was possible. The initial formaldehyde to biomass ratio, S0/X0, was useful to predict the degradation potential of high formaldehyde concentrations in batch systems. When S0/X0 ≤ 0.1, formaldehyde was completely degraded with initial concentration of up to 95 mg/L; when S0/X0 ≥ 0.29, formaldehyde at higher than 60 mg/L was only partially degraded. The inhibition of formaldehyde degradation in batch systems could be avoided by repeated additions of low concentrations of formaldehyde (up to 30 mg/L). Chemostats (14-day retention time) showed degradation of 74 mg/L-d (1110 mg/L) of influent formaldehyde with a removal capacity of 164 mg/g VSS-day. A spike of 30 mg/L (final concentration in the chemostat) formaldehyde to the chemostat caused only a small increase in effluent acetate concentration for 3 days. But a spike of 60 mg/L (final concentration in the chemostat) formaldehyde to the chemostat resulted in a dramatic increase in acetate concentration in the effluent. The results also showed that the acetate enrichment culture was not acclimated to formaldehyde even after 226 days. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 727-736, 1997.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 54 (1997), S. 513-519 
    ISSN: 0006-3592
    Keywords: plant-microbial associations ; 2,4-D ; biodegradation ; plant protection ; Dolichos lablab ; cotton ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A significant “biosafening” protection of plants from the effect of 2,4-D in plant-microbial associations has been demonstrated in this study. The 2,4-D-degrading plasmid, pJP4 was transferred into Rhizobium sp. CB1024, which nodulates Dolichos lablab, and Azospirillum brasilense Sp7 carrying a nifA-lacZ gene marker, which can colonize cotton roots. Both transconjugants degraded 2,4-D in pure culture via cometabolism up to 50 μg mL-1. When the transconjugants were inoculated onto Dolichos lablab and cotton, respectively, such plants were resistant to this herbicide when the nutrient solution was treated with 2,4-D up to 10 μg mL-1 for Dolichos lablab and 0.5 μg mL-1 for cotton. Plants inoculated with wild-type strains were dead (Dolichos lablab) or dying (cotton). Because cotton is more sensitive to herbicides, only incomplete protection of plants was achieved with the transconjugant. Improving the effect of colonization of Azospirillum on cotton roots may be critical for a complete degradation and plant protection. The transconjugant of Rhizobium sp. CB1024 was still able to nodulate Dolichos lablab, N2-fixing activity was only slightly affected. Other pesticide-degrading capacities may also be inserted into those plant-associated bacterial strains for the degradation of these chemicals by plant-microbial associations. Whether such systems will be successful when applied in the field with competition from other bacteria is being examined. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 513-519, 1997.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 0006-3592
    Keywords: ethene ; kinetics ; biodegradation ; mass transfer ; multiresponse fitting ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A method was developed to characterize the kinetics of biodegradation of low water soluble gaseous compounds in batch experiments. The degradation of ethene by resting Mycobacterium E3 cells was used as a model system. The batch degradation data were recorded as the progress curve (i.e., the time course of the ethene concentration in the headspace of the batch vessel). The recorded progress curves, however, suffered gas:liquid mass transfer limitation. A new multiresponse fitting method had to be developed to allow unequivocal identification of both the affinity coefficient, Kaff, and the gas:liquid mass transfer coefficient, Kla, in the batch vessel from the mass transfer limited data. Simulation showed that the Kaff estimate obtained is influenced by the dimensionless (volumetric basis) ethene gas:liquid partitioning coefficient (H). In the fitting procedure, Monod, Teissier, and Blackman biokinetics were evaluated for characterization of the ethene biodegradation process. The fits obtained reflected the superiority of the Blackman biokinetic function. Overall, it appears that resting Mycobacterium E3 cells metabolizing ethene at 24°C have, using Blackman biokinetics, a maximum specific degradation rate, vmax, of 10.2 nmol C2H4 mg-1 CDW min-1, and an affinity coefficient, Kaff.g, expressed in equilibrium gas concentration units, of 61.9 ppm, when H is assumed equal to 8.309. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 511-519, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 37 (1997), S. 243-251 
    ISSN: 0021-9304
    Keywords: hyaluronic acid ; crosslinking ; water-soluble carbodiimide ; biodegradation ; IR spectra ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Hyaluronic acid (HA) was chemically crosslinked with a water-soluble carbodiimide (WSC) to produce low-water-content films when brought into contact with water. The crosslinking reaction was performed in two different ways; one was by using HA films and the other by casting HA solutions. Both methods produced water-insoluble HA films. The lowest water content of the crosslinked HA films subjected to swelling with water was 60 wt% at 37°C, which was lower than any reported values. Infrared spectra of the crosslinked films suggested that intermolecular formation of ester bonds between the hydroxyl and carboxyl groups belonging to different polysaccharide molecules led to crosslinking. For comparison, pectin which possesses hydroxyl and carboxyl groups in one molecule, similar to HA, was subjected to crosslinking with WSC. The finding on pectin also supported ester formation between different polysaccharide molecules. The crosslinking of HA film with WSC in the presence of L-lysine methyl ester prolonged the in vivo degradation of HA film, probably because of amide bond formation as the crosslink. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 37, 243-251, 1997.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 35 (1997), S. 357-369 
    ISSN: 0021-9304
    Keywords: biodegradation ; tissue crosslinking calcification ; polyethylene glycol ; chemical treatments ; enzyme degradation ; SEM ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: The in vitro calcification and enzymatic degradation of bovine pericardia (BP) after a series of surface treatments were studied as a function of exposure time. The degradation of these treated surfaces was monitored by scanning electron micrography and tensile strength measurements. Polyethylene glycol-(PEG) grafted BP and glutaraldehyde- (GA) treated BPs retained maximum stability in collagenase digestion compared with SDS-treated BP. The ability of α chymotrypsin, bromelain, esterase, trypsin, and collagenase to modulate the degradation of SDS-, GA-, PEG-, Carbodiimide-, and glycidylether-treated BPs also was investigated. Incubation of various enzymes to these crosslinked pericardia variably reduced the tensile strength of these tissues. It is conceivable that chemical treatments of pericardial tissues might have altered their physical and chemical configuration and the subsequent degradation properties. In vitro calcification studies showed a substantial reduction in the calcification profile of PEG-grafted bovine pericardia compared to other treated tissues. Furthermore, the biocompatibility aspects of pericardial tissues were established by platelet adhesion and octane contact angle. In conclusion, it seems that the surface modification of bovine pericardia via GA-PEG grafting may provide new ways of controlling biodegradation and calcification. © 1997 John Wiley & Sons, Inc., J Biomed Mater Res, 35, 357-369, 1997.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 36 (1997), S. 407-417 
    ISSN: 0021-9304
    Keywords: biodegradation ; polyurethane ; enzyme ; high-performance liquid chromatography ; mass spectrometry ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: Synthesized poly(ester)urea-urethanes with 14C-labeled toluene diisocyanate or 14C-labeled chain extender ethylene diamine were incubated with cholesterol esterase in a phosphate buffer solution at 37°C. A number of biodegradation products, generated at the level of 2.8 μg/cm2 of polymer surface area, were isolated from this simulated physiologic system. Individual products were obtained by separation with reversed-phase high-performance liquid chromatography. The two different radiolabels were used to assist in the identification of degradation products from hard- and soft-segment domains. Approximately 20 degradation products were isolated; however, toluene diamine (TDA) was not detected from the chromatographic separation. Two principal products were identified by tandem mass spectrometry. Both products are TDA derivatives (secondary aromatic diamine) substituted with end units of the polyester segment at N and N′ positions of TDA. The absence of free TDA suggests that there could be a stabilization of urethane and urea linkages within the toluene diisocyanate (TDI) segments of the polyurethanes. For TDI-synthesized polymers, this finding raises awareness to the potential biological importance of degradation products other than TDA, particularly to their interaction with surrounding cells. © 1997 John Wiley & Sons, Inc. J Biomed Mater Res, 36, 407-417, 1997.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 69 (1997), S. 289-296 
    ISSN: 0268-2575
    Keywords: biodegradation ; decolourisation ; azo dye ; white rot fungi ; effluent treatment ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: --The decolourisation of Orange II by a wood-rotting fungus has been studied. It was found that Fungus F29 could effectively decolourise Orange II especially when grown as pelleted mycelia under agitated conditions. Many factors affecting the decolourisation process in nitrogen-limited media (NLM) were studied, including: concentration of glucose, NH4+, Mn(II) and veratryl alcohol; initial pH; amount of mycelium; mycelial age; Orange II concentration; temperature. Results showed that the media containing Orange II at 1000 mg dm-3 (or higher) could be decolourised by 98% of the initial colour (A480 nm) in 2 days, in most conditions tested, and that the mycelia could be repeatedly reused. © 1997 SCI.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Chichester : Wiley-Blackwell
    Journal of Chemical Technology AND Biotechnology 70 (1997), S. 299-303 
    ISSN: 0268-2575
    Keywords: oxidation ; biodegradation ; magnetic field ; immobilized bacteria ; water treatment ; activated sludge ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: --Microbial pellets in the presence of south pole magnetic fields demonstrate enhanced oxidation of phenol. Earlier work at 0·49 tesla indicates qualitatively that a unipolar north magnetic field inhibits and a south magnetic field accelerates phenol oxidation rates of an alginate immobilized, mixed bacterial culture bioreactor. This work demonstrates further enhancement by exposure during phenol oxidation at 0·15 and 0·35 tesla, as well as by exposure during acclimation of the free microorganisms prior to immobilization. The enhancement of biodegradation is a function of magnetic field strength and time of exposure. Enhancement is greatest at 0·15 tesla and indicates the existence of an optimum south magnetic field strength ©1997 SCI
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...