Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (5,978)
  • 1990-1994  (5,219)
  • 1890-1899
  • Biochemistry and Biotechnology  (9,411)
  • Genetics  (1,790)
Material
Years
Year
  • 101
    ISSN: 0887-3585
    Keywords: protein stability ; conformational free energy ; structure discrimination ; molecular dynamics ; molecular surface ; continuum solvent model ; continuum dielectric model ; boundary element method ; protein entropy ; quasi-harmonic approximation ; deliberately misfolded protein structures ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A new method for calculating the total conformational free energy of proteins in water solvent is presented. The method consists of a relatively brief simulation by molecular dynamics with explicit solvent (ES) molecules to produce a set of microstates of the macroscopic conformation. Conformational energy and entropy are obtained from the simulation, the latter in the quasi-harmonic approximation by analysis of the covariance matrix. The implicit solvent (IS) dielectric continuum model is used to calculate the average solvation free energy as the sum of the free energies of creating the solute-size hydrophobic cavity, of the van der Waals solute-solvent interactions, and of the polarization of water solvent by the solute's charges. The reliability of the solvation free energy depends on a number of factors: the details of arrangement of the protein's charges, especially those near the surface; the definition of the molecular surface; and the method chosen for solving the Poisson equation. Molecular dynamics simulation in explicit solvent relaxes the protein's conformation and allows polar surface groups to assume conformations compatible with interaction with solvent, while averaging of internal energy and solvation free energy tend to enhance the precision. Two recently developed methods - SIMS, for calculation of a smooth invariant molecular surface, and FAMBE, for solution of the Poisson equation via a fast adaptive multigrid boundary element - have been employed. The SIMS and FAMBE programs scale linearly with the number of atoms. SIMS is superior to Connolly's MS (molecular surface) program: it is faster, more accurate, and more stable, and it smooths singularities of the molecular surface. Solvation free energies calculated with these two programs do not depend on molecular position or orientation and are stable along a molecular dynamics trajectory. We have applied this method to calculate the conformational free energy of native and intentionally misfolded globular conformations of proteins (the EMBL set of deliberately misfolded proteins) and have obtained good discrimination in favor of the native conformations in all instances. Proteins 32:399-413, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 425-437 
    ISSN: 0887-3585
    Keywords: theory of protein folding ; folding funnel ; folding thermodynamics ; folding kinetics ; conformation space ; sequence/structure compatibility ; thermal denaturation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: It is hard to construct theories for the folding of globular proteins because they are large and complicated molecules having enormous numbers of nonnative conformations and having native states that are complicated to describe. Statistical mechanical theories of protein folding are constructed around major simplifying assumptions about the energy as a function of conformation and/or simplifications of the representation of the polypeptide chain, such as one point per residue on a cubic lattice. It is not clear how the results of these theories are affected by their various simplifications. Here we take a very different simplification approach where the chain is accurately represented and the energy of each conformation is calculated by a not unreasonable empirical function. However, the set of amino acid sequences and allowed conformations is so restricted that it becomes computationally feasible to examine them all. Hence we are able to calculate melting curves for thermal denaturation as well as the detailed kinetic pathway of refolding. Such calculations are based on a novel representation of the conformations as points in an abstract 12-dimensional Euclidean conformation space. Fast folding sequences have relatively high melting temperatures, native structures with relatively low energies, small kinetic barriers between local minima, and relatively many conformations in the global energy minimum's watershed. In contrast to other folding theories, these models show no necessary relationship between fast folding and an overall funnel shape to the energy surface, or a large energy gap between the native and the lowest nonnative structure, or the depth of the native energy minimum compared to the roughness of the energy landscape. Proteins 32:425-437, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 232-243 
    ISSN: 0887-3585
    Keywords: turkey lysozyme ; human lysozyme ; crystal structure ; protein structure ; structure refinement ; protein crystal ; atomic resolution ; rigid-body motion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo 〉 0 to the resolution of 1.12 Å and 1.15 Å, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 Å (TEL) and 0.034 Å (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed Beqv. However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of Beqv, was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite of the difference in 54 of 130 amino acid residues and in crystal packing, being suggested to reflect the intrinsic internal motion of chicken-type lysozymes. Proteins 30:232-243, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 264-274 
    ISSN: 0887-3585
    Keywords: factor Xa ; serine proteinases ; blood coagulation ; active site inhibitors ; transferred NOE ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structure of two selective inhibitors, Ac-Tyr-Ile-Arg-Ile-Pro-NH2 and Ac-(4-Amino-Phe)-(Cyclohexyl-Gly)-Arg-NH2, in the active site of the blood clotting enzyme factor Xa was determined by using transferred nuclear Overhauser effect nuclear magnetic resonance (NMR) spectroscopy. They represent a family of peptidic inhibitors obtained by the screening of a vast combinatorial library. Each structure was first calculated by using standard computational procedures (distance geometry, simulated annealing, energy minimization) and then further refined by systematic search of the conformation of the inhibitor docked in the active site and repeating the simulated annealing and energy minimization. The final structure was optimized by molecular dynamics simulations of the inhibitor-complex in water. The NMR restraints were kept throughout the refinement. The inhibitors assume a compact, very well defined conformation, embedded into the substrate binding site not in the same way as a substrate, blocking thus the catalysis. The model allows to explain the mode of action, affinity, and specificity of the peptides and to map the active site. Proteins 30:264-279, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    ISSN: 0887-3585
    Keywords: molecular recognition ; flexible docking ; protein-ligand interaction ; induced fit ; structure-based drug design ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Here we dock a ligand onto a receptor surface allowing hinge-bending domain/substructural movements. Our approach mimics and manifests induced fit in molecular recognition. All angular rotations are allowed on the one hand, while a conformational space search is avoided on the other. Rather than dock each of the molecular parts separately with subsequent reconstruction of the consistently docked molecules, all parts are docked simultaneously while still utilizing the position of the hinge from the start. Like pliers closing on a screw, the receptor automatically closes on its ligand in the best surface-matching way. Movements are allowed either in the ligand or in the larger receptor, hence reproducing induced molecular fit. Hinge bending movements are frequently observed when molecules associate. There are numerous examples of open versus closed conformations taking place upon binding. Such movements are observed when the substrate binds to its respective enzyme. In particular, such movements are of interest in allosteric enzymes. The movements can involve entire domains, subdomains, loops, (other) secondary structure elements, or between any groups of atoms connected by flexible joints. We have implemented the hinges at points and at bonds. By allowing 3-dimensional (3-D) rotation at the hinge, several rotations about (consecutive or nearby) bonds are implicitly taken into account. Alternatively, if required, the point rotation can be restricted to bond rotation. Here we illustrate this hinge-bending docking approach and the insight into flexibility it provides on a complex of the calmodulin with its M13 ligand, positioning the hinges either in the ligand or in the larger receptor. This automated and efficient method is adapted from computer vision and robotics. It enables utilizing entire molecular surfaces rather than focusing a priori on active sites. Hence, allows attaining the overall optimally matching surfaces, the extent and type of motions which are involved. Here we do not treat the conformational flexibility of side-chains or of very small pieces of the molecules. Therefore, currently available methods addressing these issues and the method presented here, are complementary to each other, expanding the repertoire of computational docking tools foreseen to aid in studies of recognition, conformational flexibility and drug design. Proteins 32:159-174, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    ISSN: 0887-3585
    Keywords: electrostatics ; allostery ; modeling ; signal transduction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Aspartate transcarbamylase is a large (310 kD), multisubunit protein that binds substrates cooperatively and undergoes a large change in quaternary structure when substrates bind. The forces that drive this transition are poorly understood. We evaluated the electrostatic component of these forces by using finite difference and multigrid methods to solve the nonlinear Poisson-Boltzmann equation for complexes of the enzyme with several substrates and substrate analogs. The results have been compared with calculations for the unliganded protein. While pK½ values of most ionizable residues fall within 3 pH units of values for model compounds, 31 have pK½ values that fall outside the range 0-17. Many of these residues are at the active site, where they interact with the highly charged substrate, in the 80s loop or 240s loop or interact with these loops. The pK½ values of eight ionizable residues related by the twofold molecular axes differ by more than 3 pH units, providing additional evidence for asymmetry within the crystal. As in the unliganded structure, a set of residues forms a network in which ionizable groups with Wij values greater than 2 kcal-m-1 are separated by distances greater than 5 Å. Some residues participate in this network in both the unliganded and N-phosphonacetyl-L-aspartate (PALA)-liganded structure, while others are found in only one structure. The network is more extensive in the PALA-liganded structure than in the unliganded structure, but consists of two separate networks in the two halves of the molecule. Proteins 32:200-210, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 223-228 
    ISSN: 0887-3585
    Keywords: protein structure ; phosphorylation ; glycosylation ; protein-protein interactions ; regulation ; molecular springs ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: It is proposed that the thermally driven motion of certain polypeptide chains, including those that are part of an otherwise stable folded protein, produces time-averaged three-dimensional domains that confer unique functions to a protein. These domains may be controlled by collapsing the polypeptide into an enthalpically favored structure, or extending it into an entropically dominated form. In the extended form, these domains occupy a relatively large space, which may be used to regulate protein-protein interactions and confer mechanical properties to proteins. This “entropic bristle” model makes several predictions about the structure and properties of these domains, and the predictions are used to reevaluate a range of biophysical studies on proteins. The outcome of the analysis suggests that the entropic bristle can be used to explain a wide range of disparate and apparently unrelated experimental observations. Proteins 32:223-228, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 43-51 
    ISSN: 0887-3585
    Keywords: dimeric mutant protein ; conformational stability ; guanidinium hydrochloride equilibrium denaturation ; intermediate state ; molten globule ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A mutant of the dimeric rabbit muscle creatine kinase (MM-CK) in which tryptophan 210 was replaced has been studied to assess the role of this residue in dimer cohesion and the importance of the dimeric state for the native enzyme stability. Wild-type protein equilibrium unfolding induced by guanidine hydrochloride occurs through intermediate states with formation of a molten globule and a premolten globule. Unlike the wild-type enzyme, the mutant inactivates at lower denaturant concentration and the loss of enzymatic activity is accompanied by the dissociation of the dimer into two apparently compact monomers. However, the Stokes radius of the monomer increases with denaturant concentration as determined by size exclusion chromatography, indicating that, upon monomerization, the protein structure is destabilized. Binding of 8-anilinonaphthalene-1-sulfonate shows that the dissociated monomer exposes hydrophobic patches at its surface, suggesting that it could be a molten globule. At higher denaturant concentrations, both wild-type and mutant follow similar denaturation pathways with formation of a premolten globule around 1.5-M guanidine, indicating that tryptophan 210 does not contribute to a large extent to the monomer conformational stability, which may be ensured in the dimeric state through quaternary interactions. Proteins 32:43-51, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 52-66 
    ISSN: 0887-3585
    Keywords: heteropolymers ; lattice models ; lattice polymers ; Monte Carlo ; protein folding ; protein structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We demonstrate that the recently proposed pruned-enriched Rosenbluth method (PERM) (Grassberger, Phys. Rev. E 56:3682, 1997) leads to extremely efficient algorithms for the folding of simple model proteins. We test it on several models for lattice heteropolymers, and compare it to published Monte Carlo studies of the properties of particular sequences. In all cases our method is faster than the previous ones, and in several cases we find new minimal energy states. In addition to producing more reliable candidates for ground states, our method gives detailed information about the thermal spectrum and thus allows one to analyze thermodynamic aspects of the folding behavior of arbitrary sequences. Proteins 32:52-66, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 26 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 80-87 
    ISSN: 0887-3585
    Keywords: proteins ; inverse design ; negative design ; numerical optimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A two amino acid (hydrophobic and polar) scheme is used to perform the design on target conformations corresponding to the native states of 20 single chain proteins. Strikingly, the percentage of successful identification of the nature of the residues benchmarked against naturally occurring proteins and their homologues is around 75%, independent of the complexity of the design procedure. Typically, the lowest success rate occurs for residues such as alanine that have a high secondary structure functionality. Using a simple lattice model, we argue that one possible shortcoming of the model studied may involve the coarse-graining of the 20 kinds of amino acids into just two effective types. Proteins 32:80-87, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    ISSN: 0887-3585
    Keywords: mutant T4 lysozyme ; S-2-amino-3-cyclopentylpropanoic acid ; free energy simulation ; protein stability ; packing interaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Free energy derivatives, pictorial representation of free energy changes (PROFEC) and free energy perturbation methods were employed to suggest the modifications that may improve the stability of a mutant T4 lysozyme with a S-2-amino-3-cyclopentylpropanoic acid residue (Cpe) at position 133. The free energy derivatives and PROFEC methods were used to locate promising sites where modifications may be introduced. The effects of several candidate modifications on the enzyme's stability were analyzed by the free energy perturbation method. We found that this scheme is able to effectively suggest modifications that may increase the enzyme's stability. The modifications investigated are the introduction of a methyl, a tert-butyl or a trifluoromethyl group at the Cε2 position and a cyclopropyl group between the Cδ2 and Cε2 position on the cyclopentyl ring. The stereochemistry of the introduced groups (in the α or β configurations) was studied. Our calculations predict that the introduction of a methyl group in the α configuration or a cyclopropyl group in the β configuration will increase the stability of the enzyme; the introduction of the two groups in the other configurations and the other modifications will decrease the stability of the enzyme. The results indicate that packing interactions can strongly influence the stability of the enzyme. Proteins 32:438-458, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    ISSN: 0887-3585
    Keywords: megakaryocyte growth and development factor ; thrombopoietin ; cytokine ; equilibrium denaturation ; conformation ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The effect of pH and urea on the conformation of recombinant human megakaryocyte growth and development factor (rHuMGDF) was determined by circular dichroism, intrinsic fluorescence spectroscopy, and equilibrium ultracentrifugation. The conformation of rHuMGDF was dependent on pH and urea concentration. Multiple folding forms were evidenced by multiple pH-induced transitions and urea-induced equilibrium transitions that deviated from a simple two-state process. In neutral to alkaline pH, rHuMGDF exists as a monomer, but an acid-induced conformational state self-associates to form a soluble aggregate. A folding intermediate(s) was observed with a more stable secondary structure than tertiary structure and was dependent on the pH of the urea-induced denaturation. The differences in the stabilities of the folding states were most distinct in the pH range of 4.5 to 6.5. The presence of intermediates in the folding pathway of rHuMGDF are similar to findings of previous studies of related growth factors that share a common three-dimensional structure. Proteins 32:495-503, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 504-514 
    ISSN: 0887-3585
    Keywords: cysteine protease ; zymogens ; inhibition ; caricain ; cathepsin L ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Synthetic peptides corresponding to the proregions of papain-like cysteine proteases have been shown to be good and selective inhibitors of their parental enzymes. The molecular basis for their selectivity, quite remarkable in some cases, is not fully understood. The recent determination of the crystal structures of three distinct papain-like cysteine protease zymogens allows detailed structural comparisons to be made. The reasons for the specificity shown by each proregion toward its cognate enzyme are explained in terms of the three-dimensional structure of the proregion and the interface between the mature enzyme and the proregion. These comparisons reveal that insertion and substitution of amino acids within the proregion cause major rearrangement of sidechains on the enzyme/proregion interface, allowing detailed surface and charge recognition. Proteins 32:504-514, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 1-17 
    ISSN: 0887-3585
    Keywords: solvent accessible surface ; molecular surface ; area and volume ; Delaunay complex ; alpha shape ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The size and shape of macromolecules such as proteins and nucleic acids play an important role in their functions. Prior efforts to quantify these properties have been based on various discretization or tessellation procedures involving analytical or numerical computations. In this article, we present an analytically exact method for computing the metric properties of macromolecules based on the alpha shape theory. This method uses the duality between alpha complex and the weighted Voronoi decomposition of a molecule. We describe the intuitive ideas and concepts behind the alpha shape theory and the algorithm for computing areas and volumes of macromolecules. We apply our method to compute areas and volumes of a number of protein systems. We also discuss several difficulties commonly encountered in molecular shape computations and outline methods to overcome these problems. Proteins 33:1-17, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    ISSN: 0887-3585
    Keywords: pancreatic juice ; pancreatic lipase ; glycerides ; X-ray structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Both classical pancreatic lipase (DPL) and pancreatic lipase-related protein 1 (DPLRP1) have been found to be secreted by dog exocrine pancreas. These two proteins were purified to homogeneity from canine pancreatic juice and no significant catalytic activity was observed with dog PLRP1 on any of the substrates tested: di- and tri-glycerides, phospholipids, etc. DPLRP1 was crystallized and its structure solved by molecular replacement and refined at a resolution of 2.10 Å. Its structure is similar to that of the classical PL structures in the absence of any inhibitors or micelles. The lid domain that controls the access to the active site was found to have a closed conformation. An amino-acid substitution (Ala 178 Val) in the DPLRP1 may result in a steric clash with one of the acyl chains observed in the structures of a C11 alkyl phosphonate inhibitor, a transition state analogue, bound to the classical PL. This substitution was suspected of being responsible for the absence of DPLRP1 activity. The presence of Val and Ala residues in positions 178 and 180, respectively, are characteristic of all the known PLRP1, whereas Ala and Pro residues are always present in the same positions in all the other members of the PL gene family. Introducing the double mutation Val 178 Ala and Ala 180 Pro into the human pancreatic RP1 (HPLRP1) gene yielded a well expressed and folded enzyme in insect cells. This enzyme is kinetically active on triglycerides. Our findings on DPLRP1 and HPLRP1 are therefore likely to apply to all the RP1 lipases. Proteins 32:523-531, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 295-310 
    ISSN: 0887-3585
    Keywords: molecular recognition ; Monte Carlo docking ; dead-end-elimination ; rotamer library ; correlated energy landscapes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present a computational approach for predicting structures of ligand-protein complexes and analyzing binding energy landscapes that combines Monte Carlo simulated annealing technique to determine the ligand bound conformation with the dead-end elimination algorithm for side-chain optimization of the protein active site residues. Flexible ligand docking and optimization of mobile protein side-chains have been performed to predict structural effects in the V32I/I47V/V82I HIV-1 protease mutant bound with the SB203386 ligand and in the V82A HIV-1 protease mutant bound with the A77003 ligand. The computational structure predictions are consistent with the crystal structures of these ligand-protein complexes. The emerging relationships between ligand docking and side-chain optimization of the active site residues are rationalized based on the analysis of the ligand-protein binding energy landscape. Proteins 33:295-310, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    ISSN: 0887-3585
    Keywords: 2D NMR spectroscopy ; assignment ; relaxation ; protein mutant ; disulfide bonds ; 13C natural abundance ; 15N isotope labeling ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Covalent linkages such as disulfide bonds are important for the stabilization of proteins. In the present NMR study we compare the structure and the dynamics of the single disulfide-deficient variant C45A/C73A of the α-amylase inhibitor tendamistat and the wild-type protein, which contains two disulfide bonds (C11-C27 and C45-C73). Complete proton assignment was achieved by standard homonuclear 2D techniques for the variant. Chemical shift differences, intra-strand NOE effects and protected amide proton were used to compare the connectivity of the secondary structure elements of variant and wild-type. Dynamic properties of the wild-type protein were studied by 13Cα heteronuclear NOE experiments with carbon in natural abundance. 15N isotope labeling was necessary to obtain the relaxation parameters of the variant, because of sample degradation. The 15N resonance assignment was achieved by a 15N 3D-NOESY-HMQC. Removal of the C45-C73 bond by the C45A/C73A mutation has no influence upon the β-barrel structure of tendamistat beside very local changes at the mutation site. The relaxation data revealed only subtle differences between variant and wild-type on a subnanosecond time scale. Only the N-terminus and G62 in the connecting loop between the anti-parallel β-sheets showed an increased mobility. The results are discussed in respect to thermodynamic stability and the secretion efficiency of tendamistat. Proteins 33:285-294, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 34-42 
    ISSN: 0887-3585
    Keywords: allostery ; buried water molecules ; molecular recognition ; Na+ site ; thrombin ; trypsin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Conservation of clusters of buried water molecules is a structural motif present throughout the serine protease family. Frequently, these clusters are shaped as water channels forming extensive hydrogen-bonding networks linked to the protein backbone. The most conspicuous example is the water channel present in the specificity pocket of trypsin and thrombin. In thrombin, other vitamin K-dependent proteases, and some complement factors, Na+ binds in this water channel and enhances allosterically the catalytic activity of the enzyme, whereas digestive and fibrinolytic proteases are devoid of such regulation. A comparative analysis of proteases with and without Na+ binding capability reveals the role of the water channel in maintaining the structural organization of the specificity pocket and in Na+ coordination. This enables the formulation of a molecular mechanism for Na+ binding in thrombin and leads to the identification of the structural changes necessary to engineer a functional Na+ site and enhanced catalytic activity in trypsin and other proteases. Proteins 30:34-42, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 43-48 
    ISSN: 0887-3585
    Keywords: molten globule ; α-lactalbumin ; calorimetry ; viscosimetry ; derivative spectroscopy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Thermal and denaturant-induced transitions of the acid molten globule state of bovine α-lactalbumin (acid [A] state) are analyzed by scanning calorimetry, titration calorimetry, viscosimetry, and derivative spectroscopy. A denaturant-induced heat effect of the A state is shown by a calorimetric difference titration of the A-state versus unfolded (reduced) α-lactalbumin. However, changes of viscosity and derivative spectra do not parallel the heat effect. At thermal denaturation monitored by derivative spectroscopy and scanning microcalorimetry the presence of a gradual transition in α-lactalbumin A state is shown. The results are consistent with the existence of tertiary interactions in the A state and the absence of a cooperative unfolding transition of the molten globule. The results do not support the idea that the molten globule is a third thermodynamic state. Proteins 30:43-48, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 61-73 
    ISSN: 0887-3585
    Keywords: xenon ; krypton ; hydrophobic cavity ; protein-ligand binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: X-ray diffraction is used to study the binding of xenon and krypton to a variety of crystallised proteins: porcine pancreatic elastase; subtilisin Carlsberg from Bacillus licheniformis; cutinase from Fusarium solani; collagenase from Hypoderma lineatum; hen egg lysozyme, the lipoamide dehydrogenase domain from the outer membrane protein P64k from Neisseria meningitidis; urate-oxidase from Aspergillus flavus, mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis and the ligand-binding domain of the human nuclear retinoid-X receptor RXR-α. Under gas pressures ranging from 8 to 20 bar, xenon is able to bind to discrete sites in hydrophobic cavities, ligand and substrate binding pockets, and into the pore of channel-like structures. These xenon complexes can be used to map hydrophobic sites in proteins, or as heavy-atom derivatives in the isomorphous replacement method of structure determination. Proteins 30:61-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 74-85 
    ISSN: 0887-3585
    Keywords: folding and binding ; kinetics ; pepstatin A ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The prediction of binding affinities from structure is a necessary requirement in the development of structure-based molecular design strategies. In this paper, a structural parameterization of the energetics previously developed in this laboratory has been incorporated into a molecular design algorithm aimed at identifying peptide conformations that minimize the Gibbs energy. This approach has been employed in the design of mutants of the aspartic protease inhibitor pepstatin A. The simplest design strategy involves mutation and/or chain length modification of the wild-type peptide inhibitor. The structural parameterization allows evaluation of the contribution of different amino acids to the Gibbs energy in the wild-type structure, and therefore the identification of potential targets for mutation in the original peptide. The structure of the wild-type complex is used as a template to generate families of conformational structures in which specific residues have been mutated. The most probable conformations of the mutated peptides are identified by systematically rotating around the side-chain and backbone torsional angles and calculating the Gibbs potential function of each conformation according to the structural parametrization. The accuracy of this approach has been tested by chemically synthesizing two different mutants of pepstatin A. In one mutant, the alanine at position five has been replaced by a phenylalanine, and in the second one a glutamate has been added at the carboxy terminus of pepstatin A. The thermodynamics of association of pepstatin A and the two mutants have been measured experimentally and the results compared with the predictions. The difference between experimental and predicted Gibbs energies for pepstatin A and the two mutants is 0.23 ± 0.06 kcal/mol. The excellent agreement between experimental and predicted values demonstrates that this approach can be used in the optimization of peptide ligands. Proteins 30:74-85, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 100-107 
    ISSN: 0887-3585
    Keywords: cytochrome c oxidase ; proton pump ; oxygen diffusion ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Cytochrome c oxidase is a redox-driven proton pump, which couples the reduction of oxygen to water to the translocation of protons across the membrane. The recently solved x-ray structures of cytochrome c oxidase permit molecular dynamics simulations of the underlying transport processes. To eventually establish the proton pump mechanism, we investigate the transport of the substrates, oxygen and protons, through the enzyme.   Molecular dynamics simulations of oxygen diffusion through the protein reveal a well-defined pathway to the oxygen-binding site starting at a hydrophobic cavity near the membrane-exposed surface of subunit I, close to the interface to subunit III.   A large number of water sites are predicted within the protein, which could play an essential role for the transfer of protons in cytochrome c oxidase. The water molecules form two channels along which protons can enter from the cytoplasmic (matrix) side of the protein and reach the binuclear center. A possible pumping mechanism is proposed that involves a shuttling motion of a glutamic acid side chain, which could then transfer a proton to a propionate group of heme α3. Proteins 30:100-107, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 183-192 
    ISSN: 0887-3585
    Keywords: chemical modification ; fluorescent probe ; site-directed mutagenesis ; cysteine-free protein ; alanine scanning ; enzyme reconstitution ; protein-DNA interaction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A monomercury derivative of fluoresceine acetate (FMMA) was previously suggested as a specific reagent reacting with only one of four cysteine (Cys) residues in the α subunit of Escherichia coli RNA polymerase. Here, we analyzed the reactivity against FMMA of both isolated α subunit and α subunit assembled in the holoenzyme. In both cases, the highest reactivity was identified for Cys-269 positioned in the regulatory helix of C-terminal domain (CTD) which includes the contact sites for both class-I transcription factors and DNA UP elements. Substitution of Ala for both Cys-269 and Cys-176 completely eliminates the reactivity of α subunit against the fluorescent dye, supporting the prediction that another reactive amino acid under native conformation is Cys-176, which is positioned within or near the region important for α dimerization and its binding of β' subunit. In the isolated α subunit, the reactivity against FMMA is different between these two Cys residues and the order is from Cys-269 to Cys-176. Mutant α-subunits, bearing only one Cys residue at either 269 or 176, could be reconstituted into locally modified and active enzymes. This FMMA modification system may provide a tool suitable for studies of intra- and intermolecular interactions of this subunit. Proteins 30:183-192, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 155-167 
    ISSN: 0887-3585
    Keywords: X-ray diffraction ; protein folding ; genetic engineering ; circular permutation ; 1,3-1,4-β-glucanase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The 1,3-1,4-β-glucanases from Bacillus macerans and Bacillus licheniformis, as well as related hybrid enzymes, are stable proteins comprised of one compact jellyroll domain. Their structures are studied in an effort to reveal the degree of redundancy to which the three-dimensional structure of protein domains is encoded by the amino acid sequence. For the hybrid 1,3-1,4-β-glucanase H(A16-M), it could be shown recently that a circular permutation of the sequence giving rise to the variant cpA16M-59 is compatible with wildtype-like enzymatic activity and tertiary structure (Hahn et al., Proc. Natl. Acad. Sci. USA 91:10417-10421, 1994). Since the circular permutation yielding cpA16M-59 mimicks that found in the homologous enzyme from Fibrobacter succinogenes, the question arose whether de novo circular permutations, not guided by molecular evolution of the 1,3-1,4-β-glucanases, could also produce proteins with native-like fold. The circularly permuted variants cpA16M-84, cpA16M-127, and cpA16M-154 were generated by PCR mutagenesis of the gene encoding H(A16-M), synthesized in Escherichia coli and shown to be active in β-glucan hydrolysis. CpA16M-84 and cpA16M-127 were crystallized in space groups P21 and P1, respectively, and their crystal structures were determined at 1.80 and 2.07 Å resolution. In both proteins the main parts of the β-sheet structure remain unaffected by the circular permutation as is evident from a root-mean-square deviation of main chain atoms from the reference structure within the experimental error. The only major structural perturbation occurs near the novel chain termini in a surface loop of cpA16M-84, which becomes destabilized and rearranged. The results of this study are interpreted to show that: (1) several circular permutations in the compact jellyroll domain of the 1,3-1,4-β-glucanases are tolerated without radical change of enzymatic activity or tertiary structure, (2) the three-dimensional structures of simple domains are encoded by the amino acid sequence with sufficient redundancy to tolerate a change in the sequential order of secondary structure elements along the sequence, and (3) the native N-terminal region is not needed to guide the folding polypeptide chain toward its native conformation. Proteins 30:155-167, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 125
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 193-212 
    ISSN: 0887-3585
    Keywords: secondary structure arrangements ; protein structure database ; left/right topology ; knowledge-based structure prediction ; intrinsic stability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present a fully automatic structural classification of supersecondary structure units, consisting of two hydrogen-bonded β strands, preceded or followed by an α helix. The classification is performed on the spatial arrangement of the secondary structure elements, irrespective of the length and conformation of the intervening loops. The similarity of the arrangements is estimated by a structure alignment procedure that uses as similarity measure the root mean square deviation of superimposed backbone atoms. Applied to a set of 141 well-resolved nonhomologous protein structures, the classification yields 11 families of recurrent arrangements. In addition, fragments that are structurally intermediate between the families are found; they reveal the continuity of the classification. The analysis of the families shows that the α helix and β hairpin axes can adopt virtually all relative orientations, with, however, some preferable orientations; moreover, according to the orientation, preferences in the left/right handedness of the α-β connection are observed. These preferences can be explained by favorable side by side packing of the α helix and the β hairpin, local interactions in the region of the α-β connection or stabilizing environments in the parent protein. Furthermore, fold recognition procedures and structure prediction algorithms coupled to database-derived potentials suggest that the preferable nature of these arrangements does not imply their intrinsic stability. They usually accommodate a large number of sequences, of which only a subset is predicted to stabilize the motif. The motifs predicted as stable could correspond to nuclei formed at the very beginning of the folding process. Proteins 30:193-212, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 126
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 244-248 
    ISSN: 0887-3585
    Keywords: quasi-chemical ; cost function ; HP model ; Boltzmann statistics ; contact hamiltonian ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We outline a general strategy for determining the effective coarse-grained interactions between the amino acids of a protein from the experimentally derived native-state structures. The method is, in principle, free from any adjustable or empirically determined parameters, and it is tested on simple models and compared with other existing approaches. Proteins 30:244-248, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 1-9 
    ISSN: 0887-3585
    Keywords: pleckstrin homology domain ; DNA sequence homology ; DNA sequence patterns ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Pleckstrin homology (PH) domains have been proven to bind phosphoinositides (PI) and inositolphosphates (IP). On the other hand, a binding of PH domains to proteins is still a matter of debate. The goal of this work was to identify potential PH domain protein target sites and to build a model for PH domain-protein binding. A candidate sequence, called HIKE, was identified by sequence homology analysis of the proteins that are considered the strongest PH binding candidates, i.e., Gβ, PKC, and Akt. HIKE contains a PI binding sequence and fulfills several criteria for a potential PH-binding site, i.e., it is present in other PH-binding candidates, lies in regulatory regions independently predicted to bind PH domains, and is conserved in 3-D structure among different molecules. These findings and the similarities with the mode of binding of PTB and PDZ domains suggest a β strand-β strand coordination model for PH-protein binding. The HIKE model predicts that membrane anchoring of PH domains and their targets could be a critical step in their interaction, which would consistently explain why PH-protein binding has only been detected in the presence of PI. Proteins 31:1-9, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 128
    ISSN: 0887-3585
    Keywords: subtilisin BPN′ ; proenzyme ; protein folding ; protein crystallography ; thermal stability ; calcium binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional structure of a subtilisin BPN′ construct that was produced and folded without its prodomain shows the tertiary structure is nearly identical to the wild-type enzyme and not a folding intermediate. The subtilisin BPN′ variant, Sbt70, was cloned and expressed in Escherichia coli without the prodomain, the 77-residue N-terminal domain that catalyzes the folding of the enzyme into its native tertiary structure. Sbt70 has the high-affinity calcium-binding loop, residues 75 to 83, deleted. Such calcium-independent forms of subtilisin BPN′ refold independently while retaining high levels of activity [Bryan et al., Biochemistry, 31:4937-4945, 1992]. Sbt70 has, in addition, seven stabilizing mutations, K43N, M50F, A73L, Q206V, Y217K, N218S, Q271E, and the active site serine has been replaced with alanine to prevent autolysis. The purified Sbt70 folded spontaneously without the prodomain and crystallized at room temperature. Crystals of Sbt70 belong to space group P212121 with unit cell parameters a = 53.5 Å, b = 60.3 Å, and c = 83.4 Å. Comparison of the refined structure with other high-resolution structures of subtilisin BPN′ establishes that the conformation of Sbt70 is essentially the same as that previously determined for other calcium-independent forms and that of other wild-type subtilisin BPN′ structures, all folded in the presence of the prodomain. These findings confirm the results of previous solution studies that showed subtilisin BPN′ can be refolded into a native conformation without the presence of the prodomain [Bryan et al., Biochemistry 31:4937-4945, 1992]. The structure analysis also provides the first descriptions of four stabilizing mutations, K43N, A73L, Q206V, and Q271E, and provides details of the interaction between the enzyme and the Ala-Leu-Ala-Leu tetrapeptide found in the active-site cleft. Proteins 31:21-32, 1998. Published 1998 Wiley-Liss, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 33-41 
    ISSN: 0887-3585
    Keywords: ricin structure ; inhibitor design ; energy minimization ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Ricin A-chain is an N-glucosidase that attacks ribosomal RNA at a highly conserved adenine residue. Our recent crystallographic studies show that not only adenine and formycin, but also pterin-based rings can bind in the active site of ricin. For a better understanding of the means by which ricin recognizes adenine rings, the geometries and interaction energies were calculated for a number of complexes between ricin and tautomeric modifications of formycin, adenine, pterin, and guanine. These were studied by molecular mechanics, semi-empirical quantum mechanics, and ab initio quantum mechanical methods. The calculations indicate that the formycin ring binds better than adenine and pterin better than formycin, a result that is consistent with the crystallographic data. A tautomer of pterin that is not in the low energy form in either the gas phase or in aqueous solution has the best interaction with the enzyme. The net interaction energy, defined as the interaction energy calculated in vacuo between the receptor and an inhibitor minus the solvation energy of the inhibitor, provides a good prediction of the ability of the inhibitor to bind to the receptor. The results from experimental and molecular modeling work suggest that the ricin binding site is not flexible and may only recognize a limited range of adenine-like rings. Proteins 31:33-41, 1998. Published 1998 Wiley-Liss, Inc.This article is a US Government work and, as such, is in the public domain in the United States of America.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 42-60 
    ISSN: 0887-3585
    Keywords: quantum chemistry ; molecular mechanics ; inhibitor ; metalloenzyme complexes ; selectivity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We investigated the binding properties of the metalloprotease inhibitors hydroxamate, methanethiolate, and methylphosphoramidate to a model coordination site occurring in several Zn2+ metalloproteases, including thermolysin. This was carried out using both the SIBFA (sum of interactions between fragments ab initio-computed) molecular mechanics and the SCF/MP2 procedures for the purpose of evaluating SIBFA as a metalloenzyme modeling tool. The energy-minimized structures were closely similar to the X-ray crystallographic structures of related thermolysin-inhibitor complexes. We found that selectivity between alternative geometries and between inhibitors usually stemmed from multiple interaction components included in SIBFA. The binding strength sequence is hydroxamate 〉 methanethiolate ≥ methylphosphoramidate from multiple interaction components included in SIBFA. The trends in interaction energy components, rankings, and preferences for mono- or bidentate binding were consistent in both computational procedures. We also compared the Zn2+ vs. Mg2+ selectivities in several other polycoordinated sites having various “hard” and “soft” qualities. This included a hexahydrate, a model representing Mg2+/Ca2+ binding sites, a chlorophyll-like structure, and a zinc finger model. The latter three favor Zn2+ over Mg2+ by a greater degree than the hydrated state, but the selectivity varies widely according to the ligand “softness.” SIBFA was able to match the ab initio binding energies by 〈2%, with the SIBFA terms representing dispersion and charge-transfer contributing the most to Zn2+/Mg2+ selectivity. These results showed this procedure to be a very capable modeling tool for metalloenzyme problems, in this case giving valuable information about details and limitations of “hard” and “soft” selectivity trends. Proteins 31:42-60, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 131
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 61-73 
    ISSN: 0887-3585
    Keywords: mutagenesis ; protein stability ; salt bridge ; protein folding ; malic enzyme ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A double mutant (R9E/M17K) of pigeon liver malic enzyme with glutamate and lysine replaced for arginine and methionine at positions 9 and 17, respectively, was found to be much more stable in urea and thermal denaturation, but was enzymatically less active than the wild-type enzyme (WT). Unfolding of the enzyme by urea produced a large red shifting of the protein fluorescence maximum from 320 to 360 nm, which was completely reversible upon dilution. Analysis of the denaturation curves monitored by enzyme activity lost suggested that a putative intermediate was involved in the denaturation process. The half unfolding urea concentration, measured by fluorescence spectral changes, increased from 2.24 M for WT to 3.13 M for R9E/M17K. The melting temperature increased by approximately 10°C for R9E/M17K compared with that for WT. Kinetic analysis of the thermal inactivation at 58°C also conformed to a three-state model with the rate constant for the intermediate state of R9E/M17K (k2 = 0.03 min-1) being much smaller than the WT value (k2= 2.39 min-1). Results obtained from single mutants indicated that the decreasing enzyme activity of R9E/M17K was exclusively due to R9 mutation, which increased the KmMn and KmMal by at least one order of magnitude compared with WT. Consequently, a decrease occurred in the specificity constant [kcat/(KmMnKmNADPKmMal)] for the R9 mutants at least four orders of magnitude smaller than the WT. M17K has similar properties to the WT, while R9E is more labile than the WT enzyme. The above results indicate that the extra stability gained by the double mutant possibly occurs through the introduction of an extra ion-pair between E9 and K17, which freezes the double mutant in the putative intermediate state. Examination of the N-terminal amino acid sequence of pigeon liver malic enzyme reveals that position 15 is also a lysine residue. Since the R9E mutant, which has an extra Glu9-Lys15 ion-pair, is less stable than the WT, we conclude that the contribution to malic enzyme stability is specific for the Glu9-Lys17 ion-pair. Proteins 31:61-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 74-96 
    ISSN: 0887-3585
    Keywords: Monte Carlo minimizations in torsion space ; prediction of secondary structure ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe a method for predicting the three-dimensional (3-D) structure of proteins from their sequence alone. The method is based on the electrostatic screening model for the stability of the protein main-chain conformation. The free energy of a protein as a function of its conformation is obtained from the potentials of mean force analysis of high-resolution x-ray protein structures. The free energy function is simple and contains only 44 fitted coefficients. The minimization of the free energy is performed by the torsion space Monte Carlo procedure using the concept of hierarchic condensation. The Monte Carlo minimization procedure is applied to predict the secondary, super-secondary, and native 3-D structures of 12 proteins with 28-110 amino acids. The 3-D structures of the majority of local secondary and super-secondary structures are predicted accurately. This result suggests that control in forming the native-like local structure is distributed along the entire protein sequence. The native 3-D structure is predicted correctly for 3 of 12 proteins composed mainly from the α-helices. The method fails to predict the native 3-D structure of proteins with a predominantly β secondary structure. We suggest that the hierarchic condensation is not an appropriate procedure for simulating the folding of proteins made up primarily from β-strands. The method has been proved accurate in predicting the local secondary and super-secondary structures in the blind ab initio 3-D prediction experiment. Proteins 31:74-96, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 104-104 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Buchwald, P., Bodor, N. Octanol-Water Partition of Nonzwitterionic Peptides: Predictive Power of a Molecular Size-Based Model. Proteins 30:86-99, 1998.Equation 2 should read: P = (Cin - Cfin) Vw/Cfin Vo.In the printed version, the volume ratio (Vw/Vo) incorrectly divides, and not multiplies, the concentration ratio.The publisher apologizes for this error.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 97-103 
    ISSN: 0887-3585
    Keywords: α domains ; β domains ; α/β domains ; α+β domains ; resubstitution ; jackknife ; SCOP database ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Can the coupling effect among different amino acid components be used to improve the prediction of protein structural classes? The answer is yes according to the study by Chou and Zhang (Crit. Rev. Biochem. Mol. Biol. 30:275-349, 1995), but a completely opposite conclusion was drawn by Eisenhaber et al. when using a different dataset constructed by themselves (Proteins 25:169-179, 1996). To resolve such a perplexing problem, predictions were performed by various approaches for the datasets from an objective database, the SCOP database (Murzin, Brenner, Hubbard, and Chothia. J. Mol. Biol. 247:536-540, 1995). According to SCOP, the classification of structural classes for protein domains is based on the evolutionary relationship and on the principles that govern the 3D structure of proteins, and hence is more natural and reliable. The results from both resubstitution tests and jackknife tests indicate that the overall rates of correct prediction by the algorithm incorporated with the coupling effect among different amino acid components are significantly higher than those by the algorithms without using such an effect. It is elucidated through an analysis that the main reasons for Eisenhaber et al. to have reached an opposite conclusion are the result of (1) misusing the component-coupled algorithm, and (2) using a conceptually incorrect rule to classify protein structural classes. The formulation and analysis presented in this article are conducive to clarify these problems, helping correctly to apply the prediction algorithm and interpret the results. Proteins 31:97-103, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 107-115 
    ISSN: 0887-3585
    Keywords: calorimetry ; desolvation ; linear extrapolation model ; binding ; denaturation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The effects of urea on protein stability have been studied using a model system in which we have determined the energetics of dissolution of a homologous series of cyclic dipeptides into aqueous urea solutions of varying concentration at 25°C using calorimetry. The data support a model in which urea denatures proteins by decreasing the hydrophobic effect and by directly binding to the amide units via hydrogen bonds. The data indicate also that the enthalpy of amide hydrogen bond formation in water is considerably higher than previously estimated. Previous estimates included the contribution of hydrophobic transfer of the α-carbon resulting in an overestimate of the binding between urea and the amide unit of the backbone and an underestimate of the binding enthalpy. Proteins 31:107-115, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 172-185 
    ISSN: 0887-3585
    Keywords: sequence-to-structure correlation ; contact environment ; contact prediction ; Bayesian classification ; cluster analysis ; nearest-neighbor classification ; decision tree classification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The identification of correlations between sequence patterns and structural motifs is a prerequisite in the development of protein structure prediction methods. The prediction accuracy indicates whether these correlations are discerned. We present an approach to identify long-range relationships between sequence patterns and structural motifs by varying the granulation of the structure description. Since interaction among residues is a major determinant in protein folding, we consider contact environments formed by two triplets of three sequentially neighboring residues and described by vectors whose components express contact strengths on an atomic level. Through testing various classification schemes, including their resolution and optimizing parameters, discernible relationships between sequences and folds are explored. About ten structural contact states, together with information from noncontacting regions, could improve the accuracy of contact prediction. Proteins 31:172-185, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 137
    ISSN: 0887-3585
    Keywords: lipid binding ; lipid transfer protein ; maize ; molecular modeling ; NMR ; X-ray ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional solution structure of maize nonspecific lipid transfer protein (nsLTP) obtained by nuclear magnetic resonance (NMR) is compared to the X-ray structure. Although both structures are very similar, some local structural differences are observed in the first and the fourth helices and in several side-chain conformations. These discrepancies arise partly from intermolecular contacts in the crystal lattice. The main characteristic of nsLTP structures is the presence of an internal hydrophobic cavity whose volume was found to vary from 237 to 513 Å3 without major variations in the 15 solution structures. Comparison of crystal and NMR structures shows the existence of another small hollow at the periphery of the protein containing a water molecule in the X-ray structure, which could play an important structural role. A model of the complexed form of maize nsLTP by α-lysopalmitoylphosphatidylcholine was built by docking the lipid inside the protein cavity of the NMR structure. The main structural feature is a hydrogen bond found also in the X-ray structure of the complex maize nsLTP/palmitate between the hydroxyl of Tyr81 and the carbonyl of the lipid. Comparison of 12 primary sequences of nsLTPs emphasizes that all residues delineating the cavities calculated on solution and X-ray structures are conserved, which suggests that this large cavity is a common feature of all compared plant nsLTPs. Furthermore several conserved basic residues seem to be involved in the stabilization of the protein architecture. Proteins 31:160-171, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 186-200 
    ISSN: 0887-3585
    Keywords: protein ; molecular recognition ; signal transduction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Recognition of Ras by its downstream target Raf is mediated by a Ras-recognition region in the Ras-binding domain (RBD) of Raf. Residues 78-89 in this region occupy two different conformations in the ensemble of NMR solution structures of the RBD: a fully α-helical one, and one where 87-90 form a type IV β-turn. Molecular dynamics simulations of the RBD in solution were performed to explore the stability of these and other possible conformations of both the wild-type RBD and the R89K mutant, which does not bind Ras. The simulations sample a fully helical conformation for residues 78-89 similar to the NMR helical structures, a conformation where 85-89 form a 310-helical turn, and a conformation where 87-90 form a type I |iB-turn, whose free energies are all within 0.3 kcal/mol of each other. NOE patterns and Hα chemical shifts from the simulations are in reasonable agreement with experiment. The NMR turn structure is calculated to be 3 kcal/mol higher than the three above conformations. In a simulation with the same implicit solvent model used in the NMR structure generation, the turn conformation relaxes into the fully helical conformation, illustrating possible structural artifacts introduced by the implicit solvent model. With the Raf R89K mutant, simulations sample a fully helical and a turn conformation, the turn being 0.9 kcal/mol more stable. Thus, the mutation affects the population of RBD conformations, and this is expected to affect Ras binding. For example, if the fully helical conformation of residues 78-89 is required for binding, its free energy increase in R89K will increase the binding free energy by about 0.6 kcal/mol. Proteins 31:186-200, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 201-213 
    ISSN: 0887-3585
    Keywords: accessibility to internal cavities ; crystallographic thermal factors ; ligand binding ; protein dynamic ; protein structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Protein structures are flexible both in solution and in the solid state. X-ray crystallographically determined thermal factors monitor the flexibility of protein atoms. A method utilizing such factors is proposed to delineate protein regions through which a ligand can exchange between binding site and bulk solvent. It is based on the assumption that thermally excited protein regions are excellent candidates for opening a ligand channel. Computationally simple and inexpensive, the method analyzes directions from which thermal factors can propagate within the protein, resulting in thermal motion paths (TMPs). Applications to engineered T4 lysozymes, where an artificial internal cavity can host hydrophobic molecules, and to sperm whale myoglobins, where the active site is completely buried, yielded results in agreement with other independent structural observations and with previous hypotheses. Further new features could also be suggested. The proposed TMP analysis could aid molecular dynamics simulation studies as well as time-resolved and site-directed mutagenesis experimental studies, especially given its modest computational expense and its direct roots in experimental results based on thermal factors determined in high-resolution crystallographic studies. Proteins 31:201-213,1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 15 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 214-223 
    ISSN: 0887-3585
    Keywords: β-glucosidases (family 3) ; circular permutation ; β/α-barrel ; “mainly all-β” domain ; double-domain topology ; secondary-structure prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: By predicting the general secondary structure for β-glucosidases (family 3), in conjunction with existing knowledge of the circular permutants present in B. fibrisolvens and R. albus, we were able to find the canonical elements of the secondary structure. The way these elements are linked suggests that there is a double-domain topology made up of a (β/α)8-barrel domain and a “mainly all-β” domain. A number of already known conserved motifs are located within (or near) the C-terminal part of the putative parallel β-strands of the (β/α)8-barrel, which is consistent with what is known about the location of catalytical sites for enzymes that have this domain topology. Within the circular permutants, two β/α units are located at the N-terminal part of the molecule, whereas the other six β/α units are located at the C-terminal end. In this way, the circular permutants can be seen to have a putative discontinuous double-domain topology. Proteins 31:214-223, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 247-257 
    ISSN: 0887-3585
    Keywords: protein structure prediction ; supersecondary structure ; genetic algorithm ; solvent accessible surface area ; hydrophobic potential ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe an algorithm to compute native structures of proteins from their primary sequences. The novel aspects of this method are: 1) The hydrophobic potential was set to be proportional to the nonpolar solvent accessible surface. To make computation feasible, we developed a new algorithm to compute the solvent accessible surface areas rapidly. 2) The supersecondary structures of each protein were predicted and used as restraints during the conformation searching processes. This algorithm was applied to five proteins. The overall fold of these proteins can be computed from their sequences, with deviations from crystal structures of 1.48-4.48 Å for Cα atoms. Proteins 31:247-257, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 142
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 258-270 
    ISSN: 0887-3585
    Keywords: IIAglc ; NMR ; protein phosphorylation ; PTS ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The high-resolution solution structure of the phosphocarrier protein IIAglc from Bacillus subtilis is determined using 3D and 4D heteronuclear NMR methods. B. subtilis IIAglc contains 162 amino acid residues and is one of the larger proteins for which high-resolution solution structure has been determined by NMR methods. The structures have been calculated from a total of 2,232 conformational constraints. Comparison with the X-ray crystal structure indicates that the overall fold is the same in solution and in crystalline environments, although some local structural differences are observed. These occur largely in turns and loops, and mostly correspond to regions with high-temperature factors in the crystal structure. The N-terminus of IIAglc is disordered in solution. The active site is located in a concave region of the protein surface. The histidine, which accepts the phosphoryl group (His 83), interacts with a neighboring histidine (His 68) and is surrounded by hydrophobic residues. Proteins 31:258-270, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 143
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 225-246 
    ISSN: 0887-3585
    Keywords: residue location parameter ; environment parameter ; protein fold description ; protein fold recognition ; threading ; homogeneity ; amino acid type discrimination ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The parametric description of residue environments through solvent accessibility, backbone conformation, or pairwise residue-residue distances is the key to the comparison between amino acid types at protein sequence positions and residue locations in structural templates (condition of protein sequence-structure match). For the first time, the research results presented in this study clarify and allow to quantify, on a rigorous statistical basis, to what extent the amino acid type-specific distributions of commonly used environment parameters are discriminative with respect to the 20 amino acid types. Relying on the Bahadur theory, we estimate the probability of error in a single-sequence-structure alignment based on weak or absent discriminative power in a learning database of protein structure. We present the results for many residue environment variables and demonstrate that each fold description parameter is sensitive with respect to only a few amino acid types while indifferent to most of the other amino acid types. Even complex structural characteristics combining solvent-accessible surface area, backbone conformation, and pairwise distances distinguish only some amino acid types, whereas the others remain nondiscriminated. We find that the knowledge-based potentials currently in use treat especially Ala, Asp, Gln, His, Ser, Thr, and Tyr as essentially “average” amino acids. Thus, highly discriminative amino acid types define the alignment register in gapless sequence-structure alignments. The introduction of gaps leads to alignment ambiguities at sequence positions occupied by nondiscriminated amino acid types. Therefore, local sequence-structure alignments produced by techniques with gaps cannot be reliable. Conceptionally new and more sensitive environment parameters must be invented. Proteins 31:225-246, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 271-281 
    ISSN: 0887-3585
    Keywords: low resolution models ; knowledge-based potentials ; unfolding kinetics ; helix unwinding ; cooperative motions ; dynamic Monte Carlo ; correlations between atomic fluctuations ; virtual bond rotations ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A coarse-grained dynamic Monte Carlo method is proposed for investigating the conformational dynamics of proteins. Each residue is represented by two interaction sites, one at the α-carbon, and the other on the amino acid sidechain. Geometry and energy parameters extracted from databank structures are used. The method is applied to the crystal structure of apomyoglobin (apo-Mb). Equilibrium and dynamic properties of apo-Mb are characterized within computation times one order of magnitude shorter than conventional molecular dynamics (MD) simulations. The calculated rms fluctuations in α-carbons are in good agreement with crystallographic temperature factors. Regions exhibiting enhanced conformational mobilities are identified. Among the loops connecting the eight helices A to H, the loop CD undergoes the fastest motions, leading to partial unwinding of helix D. Helix G is the most stable helix on the basis of the kinetic stability of dihedral angles, followed by the respective helices A, E, H, and B. These results, in agreement with H/D exchange and two-dimensional NMR experiments, as well as with MD simulations, lend support to the use of the proposed approach as an efficient, yet physically plausible, means of characterizing protein conformational dynamics. Proteins 31:271-281, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 282-298 
    ISSN: 0887-3585
    Keywords: diphtheria toxin ; docking ; ligand design ; molecular recognition ; NAD ; pertussis toxin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We describe a novel application of a fragment-based ligand docking technique; similar methods are commonly applied to the de novo design of ligands for target protein binding sites. We have used several new flexible docking and superposition tools, as well as a more conventional rigid-body (fragment) docking method, to examine NAD binding to the catalytic subunits of diphtheria (DT) and pertussis (PT) toxins, and to propose a model of the NAD-PT complex. Docking simulations with the rigid NAD fragments adenine and nicotinamide revealed that the low-energy dockings clustered in three distinct sites on the two proteins. Two of the sites were common to both fragments and were related to the structure of NAD bound to DT in an obvious way; however, the adenine subsite of PT was shifted relative to that of DT. We chose adenine/nicotinamide pairs of PT dockings from these clusters and flexibly superimposed NAD onto these pairs. A Monte Carlo-based flexible docking procedure and energy minimization were used to refine the modeled NAD-PT complexes. The modeled complex accounts for the sequence and structural similarities between PT and DT and is consistent with many results that suggest the catalytic importance of certain residues. A possible functional role for the structural difference between the two complexes is discussed. Proteins 31:282-298, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 299-308 
    ISSN: 0887-3585
    Keywords: quasi-chemical approximation ; statistical potential ; energy landscape ; glass transition ; threading ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In this study, we exploited an elementary 2-dimensional square lattice model of HP polymers to test the premise of extracting contact energies from protein structures. Given a set of prespecified energies for H-H, H-P, and P-P contacts, all possible sequences of various lengths were exhaustively enumerated to find sequences that have unique lowest-energy conformations. The lowest-energy structures (or native structures) of such (native) sequences were used to extract contact energies using the Miyazawa-Jernigan procedure and here-defined reference state. The relative magnitudes of the original energies were restored reasonably well, but the extracted contact energies were independent of the absolute magnitudes of the initial energies. We turned to a more detailed characterization of the energy landscapes of the native sequences in light of a new theoretical framework on protein folding. Foldability of such sequences imposes two limits on the absolute value of the prespecified energies: a lower bound entailed by the minimum requirement for thermodynamic stability and an upper bound associated with the entrapment of the chain to local minima. We found that these two limits confine the prespecified energy values to a rather narrow range which, surprisingly, also contains the extracted energies in all the cases examined. These results indicate that the quasi-chemical approximation can be used to connect quantitatively the occurrence of various residue-residue contacts in an ensemble of native structures with the energies of the contacts. More importantly, they suggest that the extracted contact energies do contain information on structural stability and can be used to estimate actual structural energetics. This study also encourages the use of structure-derived contact energies in threading. The finding that there is a rather narrow range of energies that are optimal for folding a sequence also cautions the use of arbitrary energy Hamiltonion in minimal folding models. Proteins 31:299-308, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 147
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 309-319 
    ISSN: 0887-3585
    Keywords: tyrosine kinase ; protein stability ; differential scanning calorimetry ; CD-spectroscopy ; Sso7d ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The thermal unfolding of three SH3 domains of the Tec family of tyrosine kinases was studied by differential scanning calorimetry and CD spectroscopy. The unfolding transition of the three protein domains in the acidic pH region can be described as a reversible two-state process. For all three SH3 domains maximum stability was observed in the pH region 4.5 〈 pH 〈 7.0 where these domains unfold at temperatures of 353K (Btk), 342K (Itk), and 344K (Tec). At these temperatures an enthalpy change of 196 kJ/mol, 178 kJ/mol, and 169 kJ/mol was measured for Btk-, Itk-, and Tec-SH3 domains, respectively. The determined changes in heat capacity between the native and the denatured state are in an usual range expected for small proteins. Our analysis revealed that all SH3 domains studied are only weakly stabilized and have free energies of unfolding which do not exceed 12-16 kJ/mol but show quite high melting temperatures.Comparing unfolding free energies measured for eukaryotic SH3 domains with those of the topologically identical Sso7d protein from the hyperthermophile Sulfolobus solfataricus, the increased melting temperature of the thermostable protein is due to a broadening as well as a significant lifting of its stability curve. However, at their physiological temperatures, 310K for mesophilic SH3 domains and 350K for Sso7d, eukaryotic SH3 domains and Sso7d show very similar stabilities. Proteins 31:309-319, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 148
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 320-333 
    ISSN: 0887-3585
    Keywords: cutinase ; crystal polymorphism ; packing contacts ; hydrophobicity ; electrostatic and hydrophobic interactions ; protein-accessible surface ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: During the characterization of mutants and covalently inhibited complexes of Fusarium solani cutinase, nine different crystal forms have been obtained so far. Protein mutants with a different surface charge distribution form new intermolecular salt bridges or long-range electrostatic interactions that are accompanied by a change in the crystal packing. The whole protein surface is involved in the packing contacts and the hydrophobicities of the protein surfaces in mutual contact turned out to be noncorrelated, which indicates that the packing interactions are nonspecific. In the case of the hydrophobic variants, the packing contacts showed some specificity, as the protein in the crystal tends to form either crystallographic or noncrystallographic dimers, which shield the hydrophobic surface from the solvent. The likelihood of surface atoms to be involved in a crystal contact is the same for both polar and nonpolar atoms. However, when taking areas in the 200-600 Å2 range, instead of individual atoms, the either highly hydrophobic or highly polar surface regions were found to have an increased probability of establishing crystal lattice contacts. The protein surface surrounding the active-site crevice of cutinase constitutes a large hydrophobic area that is involved in packing contacts in all the various crystalline contexts. Proteins 31:320-333, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 335-344 
    ISSN: 0887-3585
    Keywords: conformational transition ; protein folding ; lattice simulation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: This study focuses on the phenomenon of kinetic partitioning when a polypeptide chain has two ground-state conformations, one of which is kinetically more reachable than the other. We designed sequences for lattice model proteins with two different conformations of equal energy corresponding to the global energy minimum. Folding simulations revealed that one of these conformations was indeed much more kinetically accessible than the other. We found that the number and strength of local contacts in the ground-state conformation are the major factors that determine which conformation is reached faster; the greater the number of local contacts, the more kinetically reachable a conformation is. We present simple statistical-mechanical arguments to explain these findings. Our results may be relevant in explaining the phenomenology of such proteins as human plasminogen activator inhibitor-1 (PAI-1), photosystem II, and prions. Proteins 31:335-344, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 150
    ISSN: 0887-3585
    Keywords: DEX gene ; dextranase ; protein threading ; structure prediction ; circular dichroism ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The DEX gene encodes an extracellular dextranase (EC 3.2.1.11); this enzyme hydrolyzes the α(1,6) glucosidic bond contained in dextran to release small isomaltosaccharides. Sequence analysis has revealed only one homologous sequence, CB-8 protein, from Arthrobacter sp., with 30% sequence identity. The secondary structure prediction for Dex was corroborated by circular dichroism measurements. To explore the possibility that Dex protein might adopt a fold similar to any known structure, we conducted a threading search of a three-dimensional structure database. This search revealed that the Dex sequence is compatible with the galactose oxidase/methanol dehydrogenase/sialidase fold. A structural model of Dex based on these results is physically and biologically plausible and leads to testable predictions, including the prediction that Asp246 and Glu299 might be catalytic residues. Also, according to this model the Dex enzyme has a mechanism of hydrolysis with net inversion of anomeric configuration. Proteins 31:345-354, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 355-369 
    ISSN: 0887-3585
    Keywords: homology modeling ; database searching ; conserved torsional angles ; prediction of sidechain conformations ; homologous families of proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We investigated the conservation of sidechain conformation for each residue within a homologous family of proteins in the Protein Data Bank (PDB) and performed sidechain modeling using this information. The information was represented by the probability of conserved sidechain torsional angles obtained from many families of proteins, and these were calculated for a pair of residues at topologically equivalent positions as a result of structural alignment. Probabilities were obtained for a pair of same amino acids and for a pair of different amino acids. The correlation between environmental residues and the fluctuation of probability was examined for the pair of same amino acid residues, and the simple probability was calculated for the pair of different amino acids. From the results on the same amino acid pairs, 17 amino acids, except for Ala, Gly, and Pro, were divided into two types: those that were influenced and those that were not influenced by the environmental residues. From results on different amino acid pairs, a replacement between large residues, such as Trp, Phe, and Tyr, was performed assuming conservation of their torsional angles within a homologous family of proteins. We performed sidechain modeling for 11 known proteins from their native and modeled backbones, respectively. With the native backbones, the percentage of the χ1 angle correct within 30° was found to be 67% and 80% for all and core residues, respectively. With the modeled backbones, the percentage of the correct χ1 angle was found to be 60% and 72% for all and core residues, respectively. To estimate an upper limit on the accuracy for predicting sidechain conformations, we investigated the probability of conserved sidechain torsional angles for highly similar proteins having 〉 90% sequence identity and 〈2.5-Å X-ray resolution. In those proteins, 83% of the sidechain conformations were conserved for the χ1 angle. Proteins 31:355-369, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 370-382 
    ISSN: 0887-3585
    Keywords: NMR structure refinement ; correlated/collective motion ; essential dynamics analysis ; PH domain ; single-stranded DNA binding protein ; gene V protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Large concerted motions of proteins which span its “essential space,” are an important component of protein dynamics. We investigate to what extent structure ensembles generated with standard structure calculation techniques such as simulated annealing can capture these motions by comparing them to long-time molecular dynamics (MD) trajectories. The motions are analyzed by principal component analysis and compared using inner products of eigenvectors of the respective covariance matrices. Two very different systems are studied, the β-spectrin PH domain and the single-stranded DNA binding protein (ssDBP) from the filamentous phage Pf3. A comparison of the ensembles from NMR and MD shows significant overlap of the essential spaces, which in the case of ssDBP is extraordinarily high. The influence of variations in the specifications of distance restraints is investigated. We also study the influence of the selection criterion for the final structure ensemble on the definition of mobility. The results suggest a modified criterion that improves conformational sampling in terms of amplitudes of correlated motion. Proteins 31:370-382, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 86-99 
    ISSN: 0887-3585
    Keywords: partition coefficient ; lipophilicity profile ; ion-pair partitioning ; molecular volume ; hydrogen bonding ; cyclosporin ; octreotide (sandostatin) ; gramicidin ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A remarkably simple, molecular size-based model developed to predict octanol-water partition coefficients for organic compounds is tested on a set of 188 neutral peptides with available experimental partition data. Despite using only two parameters, it gives a promising correlation (r2 = 0.914; σ = 0.455, F = 1978.0), and predictions are in a realistic range even for larger peptides (cyclosporin, melanotan, sandostatin) where common, overparametrized fragment methods become quite unreliable. Ion-pair partitioning and the extraction constant formalism is briefly reviewed to describe the sigmoidal lipophilicity profile of ionizable, nonzwitterionic peptides. It seems possible to extend the present model to estimate apparent partition coefficients measured around neutral pH and physiological conditions for monoionic peptides; however, as no standard conditions are yet defined and only relatively small number of experimental data are available, the situation here is more complex. Proteins 30:86-99, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 475-494 
    ISSN: 0887-3585
    Keywords: protein assembly ; protein structure ; protein reduced models ; lattice models ; Monte Carlo simulations ; fold prediction ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A new, efficient method for the assembly of protein tertiary structure from known, loosely encoded secondary structure restraints and sparse information about exact side chain contacts is proposed and evaluated. The method is based on a new, very simple method for the reduced modeling of protein structure and dynamics, where the protein is described as a lattice chain connecting side chain centers of mass rather than Cαs. The model has implicit built-in multibody correlations that simulate short- and long-range packing preferences, hydrogen bonding cooperativity and a mean force potential describing hydrophobic interactions. Due to the simplicity of the protein representation and definition of the model force field, the Monte Carlo algorithm is at least an order of magnitude faster than previously published Monte Carlo algorithms for structure assembly. In contrast to existing algorithms, the new method requires a smaller number of tertiary restraints for successful fold assembly; on average, one for every seven residues as compared to one for every four residues. For example, for smaller proteins such as the B domain of protein G, the resulting structures have a coordinate root mean square deviation (cRMSD), which is about 3 Å from the experimental structure; for myoglobin, structures whose backbone cRMSD is 4.3 Å are produced, and for a 247-residue TIM barrel, the cRMSD of the resulting folds is about 6 Å. As would be expected, increasing the number of tertiary restraints improves the accuracy of the assembled structures. The reliability and robustness of the new method should enable its routine application in model building protocols based on various (very sparse) experimentally derived structural restraints. Proteins 32:475-494, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 155
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 459-474 
    ISSN: 0887-3585
    Keywords: protein inhibitors ; serine proteinases ; protein loop ; canonical conformation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Canonical loops of protein inhibitors of serine proteinases occur in proteins having completely different folds. In this article, conformations of the loops have been analyzed for inhibitors belonging to 10 structurally different families. Using deviation in Cα-Cα distances as a criterion for loop similarity, we found that the P3-P3′ segment defines most properly the length of the loop. When conformational differences among loops of individual inhibitors were compared using root mean square deviation (rmsd) in atomic coordinates for all main chain atoms (Δr method) and rmsd operating in main chain torsion angles (Δt method), differences of up to 2.1 Å and 72.3°, respectively, were observed. Such large values indicate significant conformational differences among individual loops. Nevertheless, the overall geometry of the inhibitor-proteinase interaction is very well preserved, as judged from the similarity of Cα-Cα distances between Cα of catalytic Ser and Cα of P3-P3′ residues in various enzyme-inhibitor complexes. The mode of interaction is very well preserved both in the chymotrypsin and subtilisin families, as distances calculated for subtilisin-inhibitor complexes are almost always within the range of those for chymotrypsin-inhibitor complexes. Complex formation leads to conformational changes of up to 160° for χ1 angle. Side chains of residue P1 and P2′ adopt in different complexes a similar orientation (χ1 angle = -60° and -180°, respectively). To check whether the canonical conformation can be found among non-proteinase-inhibitor Brookhaven Protein Data Bank structures, two selection criteria - the allowed main chain dihedral angles and Cα-Cα distances for the P3-P3′ segment - were applied to all these structures. This procedure detected 132 unique hexapeptide segments in 121 structurally and functionally unrelated proteins. Partial preferences for certain amino acids occurring at particular positions in these hexapeptides could be noted. Further restriction of this set to hexapeptides with a highly exposed P1 residue side chain resulted in 40 segments. The possibility of complexes formation between these segments and serine proteinases was ruled out in molecular modeling due to steric clashes. Several structural features that determine the canonical conformation of the loop both in inhibitors and in other proteins can be distinguished. They include main chain hydrogen bonds both within the P3-P3′ segment and with the scaffold region, P3-P4 and P3′-P4′ hydrophobic interactions, and finally either hydrophobic or polar interactions involving the P1′ residue. Proteins 32:459-474, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 18-29 
    ISSN: 0887-3585
    Keywords: molecular cavities ; packing defects ; Delaunay complex ; alpha shape ; structural solvent in proteins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The structures of proteins are well-packed, yet they contain numerous cavities which play key roles in accommodating small molecules, or enabling conformational changes. From high-resolution structures it is possible to identify these cavities. We have developed a precise algorithm based on alpha shapes for measuring space-filling-based molecular models (such as van der Waals, solvent accessible, and molecular surface descriptions). We applied this method for accurate computation of the surface area and volume of cavities in several proteins. In addition, all of the atoms/residues lining the cavities are identified. We use this method to study the structure and the stability of proteins, as well as to locate cavities that could contain structural water molecules in the proton transport pathway in the membrane protein bacteriorhodopsin. Proteins 33:18-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 515-522 
    ISSN: 0887-3585
    Keywords: sugar ; acetamido group ; mimicry ; inhibition ; lysozyme ; CDR loop ; VHH ; heavy-chain immunoglobulin ; solvent accessible surface area ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Whereas antibodies have demonstrated the ability to mimic various compounds, classic heavy/light-chain antibodies may be limited in their applications. First, they tend not to bind enzyme active site clefts. Second, their size and complexity present problems in identifying key elements for binding and in using these elements to produce clinically valuable compounds. We have previously shown how cAb-Lys3, a single variable domain fragment derived from a lysozyme-specific camel antibody naturally lacking light chains, overcomes the first limitation to become the first antibody structure observed penetrating an enzyme active site. We now demonstrate how cAb-Lys3 mimics the oligosaccharide substrate functionally (inhibition constant for lysozyme, 50 nM) and structurally (lysozyme buried surface areas, hydrogen bond partners, and hydrophobic contacts are similar to those seen in sugar-complexed structures). Most striking is the mimicry by the antibody complementary determining region 3 (CDR3) loop, especially Ala104, which mimics the subsite C sugar 2-acetamido group; this group has previously been identified as a key feature in binding lysozyme. Comparative simplicity, high affinity and specificity, potential to reach and interact with active sites, and ability to mimic substrate suggest that camel heavy-chain antibodies present advantages over classic antibodies in the design, production, and application of clinically valuable compounds. Proteins 32:515-522, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 31 (1998), S. 460-476 
    ISSN: 0887-3585
    Keywords: α-helix ; sequence ; structure ; database ; amino acid ; secondary structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An analysis of the amino acid distributions at 15 positions, viz., N“, N′, Ncap, N1, N2, N3, N4, Mid, C4, C3, C2, C1, Ccap, C′, and C” in 1,131 α-helices reveals that each position has its own unique characteristics. In general, natural helix sequences optimize by identifying the residues to be avoided at a given position and minimizing the occurrence of these avoided residues rather than by maximizing the preferred residues at various positions. Ncap is most selective in its choice of residues, with six amino acids (S, D, T, N, G, and P) being preferred at this position and another 11 (V, I, F, A, K, L, Y, R, E, M, and Q) being strongly avoided. Ser, Asp, and Thr are all more preferred at Ncap position than Asn, whose role at helix N-terminus has been highlighted by earlier analyses. Furthermore, Asn is also found to be almost equally preferred at helix C-terminus and a novel structural motif is identified, involving a hydrogen bond formed by Nδ2 of Asn at Ccap or C1 position, with the backbone carbonyl oxygen four residues inside the helix. His also forms a similar motif at the C-terminus. Pro is the most avoided residue in the main body (N4 to C4 positions) and at C-ter-minus, including Ccap of an α-helix. In 1,131 α-helices, no helix contains Pro at C3 or C2 positions. However, Pro is highly favoured at N1 and C′. The doublet X-Pro, with Pro at C′ position and extended backbone conformation for the X residue at Ccap, appears to be a common structural motif for termination of α-helices, in addition to the Schellman motif. Main body of the helix shows a high preference for aliphatic residues Ala, Leu, Val, and Ile, while these are avoided at helix termini. A propensity scale for amino acids to occur in the middle of helices has been obtained. Comparison of this scale with several previously reported scales shows that this scale correlates best with the experimentally determined values. Proteins 31:460-476, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 159
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 3-6 
    ISSN: 0887-3585
    Keywords: methyltransferase ; DNA-binding protein ; nucleotide flipping ; extrahelical nucleotide ; DNA-repair ; chemotherapy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Human methyltransferase (hAT) catalyzes the transfer of an alkyl group from the 6-position of guanine to an active site Cys residue. The physiological role of hAT is the repair of alkylated guanine residues in DNA. However, the repair of methylated or chloroethylated guanine bases negates the effects of certain chemotherapeutic agents. A model of how hAT binds DNA might be useful in the design of compounds that could inactivate hAT. We have used computer modeling studies to generate such a model. The model utilizes a helix-loop-wing DNA binding motif found in Mu transposase. The model incorporates a flipped out guanine base in order to bring the methylated oxygen atom close to the active site Cys residue. The model is consistent with a variety of chemical and biochemical data. Proteins 32:3-6, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 160
    ISSN: 0887-3585
    Keywords: conformational change ; free energy calculations ; HIV protease ; molecular dynamics simulations ; protein structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Two different structures of ligand-free HIV protease have been determined by X-ray crystallography. These structures differ in the position of two 12 residue, β-hairpin regions (or “flaps”) which cap the active site. The movements of the flaps must be involved in the binding of substrates since, in either conformation, the flaps block the binding site. One of these structures is similar to structures of the ligand-bound enzyme; however, the importance of both structures to enzyme function is unclear. This transformation takes place on a time scale too long for conventional molecular dynamics simulations, so the process was studied by first identifying a reaction path between the two structures and then calculating the free energy along this path using umbrella sampling. For the ligand-free enzyme, it is found that the two structures are nearly equally stable, with the ligand-bound-type structure being less stable, consistent with X-ray crystallography data. The more stable open structure does not have a lower potential energy, but is stabilized by entropy. The transition occurs through a collapse and reformation of the β-sheet structure of the conformationally flexible, glycine-rich flap ends. Additionally, some problems in studying conformational changes in proteins through the use of a single reaction path are addressed. Proteins 32:7-16, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 161
    ISSN: 0887-3585
    Keywords: colicin E7 ; CD spectrum ; chromatography ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Purified colicin E7 was analyzed by CD spectrum and gel filtration chromatography in a mimicking membrane-translocation phase. It was found that the CD spectra of colicin E7 at pH 7 and pH 2.5 were similar. Although the melting temperature of the protein shifted from 54.5°C to 34°C at low pH, the thermal denaturation curves of colicin E7 at different pH conditions still fit a two-state model. These experimental results imply that a minor structural change, triggered by acidic pH, for instance, may reduce the energy required for protein melting. In contrast to the minor change in secondary structure at different pH conditions, we observed that, in vitro, all monomeric colicin E7s converted into multimer-like conformations after recovering from the partial unfolding process. This multimeric form of colicin can only be dissociated by formamide and guanidine hydrochloride, indicating that this protein complex is indeed formed by aggregation of the monomeric colicins. Most interestingly, the aggregated colicins still perform in vivo bacteriocidal activity. We suggest that in a partial unfolding state the colicin is prepared for binding to the specific targets for translocation through the membrane. However, in the absence of specific targets in vitro these unfold intermediates may therefore aggregate into the multimeric form of colicins. Proteins 32:17-25, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 145-158 
    ISSN: 0887-3585
    Keywords: protein titration ; molecular dynamics ; average conformation ; continuum electrostatistics ; protein dielectric constant ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Several methods for including the conformational flexibility of proteins in the calculation of titration curves are compared. The methods use the linearized Poisson-Boltzmann equation to calculate the electrostatic free energies of solvation and are applied to bovine pancreatic trypsin inhibitor (BPTI) and hen egg-white lysozyme (HEWL). An ensemble of conformations is generated by a molecular dynamics simulation of the proteins with explicit solvent. The average titration curve of the ensemble is calculated in three different ways: an average structure is used for the pKa calculation; the electrostatic interaction free energies are averaged and used for the pKa calculation; and the titration curve for each structure is calculated and the curves are averaged. The three averaging methods give very similar results and improve the pKa values to approximately the same degree. This suggests, in contrast to implications from other work, that the observed improvement of pKa values in the present studies is due not to averaging over an ensemble of structures, but rather to the generation of a single properly averaged structure for the pKa calculation. Proteins 33:145-158, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 163
    ISSN: 0887-3585
    Keywords: copy number control ; plasmids ; transcriptional repressors ; homology modeling ; protein comparison ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The small transcriptional repressor CopG protein (45 amino acids) encoded by the streptococcal plasmid pMV158 was purified to near homogeneity. Gel filtration chromatography and analytical ultracentrifugation showed that the native protein is a spherical dimer of identical subunits. Circular dichroism measurements of CopG indicated a consensus average content of more than 50% α-helix and 10-35% β-strand and turns, which is compatible with the predicted secondary structure of the protein. CopG exhibited a prolonged intracellular half-life, but deletions in regions other than the C-terminal affected the global structure of the protein, severely reducing the half-lives of the CopG variants. This indicates that CopG has a compact structure, perhaps constituted by a single domain. Molecular modeling of CopG showed a good fitting between the helix-turn-helix motifs of well-known repressor proteins and a bihelical unit of CopG. However, modeling of CopG with ribbon-helix-helix class of DNA binding proteins also exhibited an excellent fit. Eleven out of the 12 replicons belonging to the pMV158 plasmid family could also encode Cop proteins, which share features with both helix-turn-helix and β-sheet DNA binding proteins. Proteins 32:248-261, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 164
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 268-275 
    ISSN: 0887-3585
    Keywords: photon absorption simulation ; SCF-CI ; chromophore ; vertical transition ; conformational change ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Molecular dynamics simulations were carried out to study what happens in a photoreceptor protein, photoactive yellow protein (PYP), immediately after the vertical transition of the chromophore from the ground to the excited state. A photon absorption simulation was performed to investigate the movement of amino acid residues upon photoexcitation. To calculate the excited state of the chromophore, SCF-CI calculation was carried out with INDO/S Hamiltonian. We observed that some amino acid residues have strong interactions with the chromophore. Most of these amino acid residues are conserved in PYPs from three different species of bacteria. This observation indicates the biological importance of these residues. Proteins 32:268-275, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 289-295 
    ISSN: 0887-3585
    Keywords: molecular evolution ; protein evolution ; mutation matrices ; Metropolis kinetics ; Boltzmann statistics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: New computational models of natural site mutations are developed that account for the different selective pressures acting on different locations in the protein. The number of adjustable parameters is greatly reduced by basing the models on the underlying physical-chemical properties of the amino acids. This allows us to use our method on small data sets built of specific protein types. We demonstrate that with this approach we can represent the evolutionary patterns in HIV envelope proteins far better than with more traditional methods. Proteins 32:289-295, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 166
    ISSN: 0887-3585
    Keywords: adenylate kinase ; Mg2+ and Mn2+ coordination ; zinc fingers ; entropic substrate release ; thermostability ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Crystal structures of Bacillus stearothermophilus adenylate kinase with bound Ap5A, Mn2+ Ap5A, and Mg2+ Ap5A have been determined by X-ray crystallography to resolutions of 1.6 Å, 1.85 Å, and 1.96 Å, respectively. The protein's lid domain is partially open, being both rotated and translated away from bound Ap5A. The flexibility of the lid domain in the ternary state and its ability to transfer force directly to the the active site is discussed in light of our proposed entropic mechanism for catalytic turnover. The bound Zn2+ atom is demonstrably structural in nature, with no contacts other than its ligating cysteine residues within 5 Å. The B. stearothermophilus adenylate kinase lid appears to be a truncated zinc finger domain, lacking the DNA binding finger, which we have termed a zinc knuckle domain. In the Mg2+ Ap5A and Mn2+ Ap5A structures, Mg2+ and Mn2+ demonstrate six coordinate octahedral geometry. The interactions of the Mg2+-coordinated water molecules with the protein and Ap5A phosphate chain demonstrate their involvement in catalyzing phosphate transfer. The protein selects for β-γ (preferred by Mg2+) rather than α-γ (preferred by Mn2+) metal ion coordination by forcing the ATP phosphate chain to have an extended conformation. Proteins 32:276-288, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 167
    ISSN: 0887-3585
    Keywords: cysteine proteinase inhibitors ; cystatins ; human stefin B ; kinetics ; protein folding ; stopped-flow CD ; trifluoroethanol ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The folding of human stefin B has been studied by several spectroscopic probes. Stopped-flow traces obtained by circular dichroism in the near and far UV, by tyrosine fluorescence, and by extrinsic probe ANS fluorescence are compared. Most (60 ± 5%) of the native signal in the far UV circular dichroism (CD) appeared within 10 ms in an unresolved “burst” phase, which was followed by a fast phase (t = 83 ms) and a slow phase (t = 25 s) with amplitudes of 30% and 10%, respectively. Similar fast and slow phases were also evident in the near UV CD, ANS fluorescence, and tyrosine fluorescence. By contrast, human stefin A, which has a very similar structure, exhibited only one kinetic phase of folding (t = 6 s) detected by all the spectroscopic probes, which occurred subsequent to an initial “burst” phase observed by far UV CD. It is interesting that despite close structural similarity of both homologues they fold differently, and that the less stable human stefin B folds faster by an order of magnitude (comparing the non-proline limited phase). To gain more information on the stefin B folding mechanism, effects of pH and trifluoroethanol (TFE) on the fast and slow phases were investigated by several spectroscopic probes. If folding was performed in the presence of 7% of TFE, rate acceleration and difference in the mechanism were observed. Protein 32:296-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 168
    ISSN: 0887-3585
    Keywords: acid denatured state ; ANS fluorescence ; Arrhenius plot ; kinetics ; molten globule intermediate ; TFE denatured state ; protein folding ; human stefin B ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: It has been shown that human stefin B exhibits molten globule intermediates when denatured by acid or GuHCl. In the presence of TFE, it transforms into a highly helical state. In our first study on its folding mechanism (Žerovnik et al., Proteins 32:296-303), the kinetics measured by circular dichroism (CD) and fluorescence were correlated. In the present work the kinetics of folding were monitored by tyrosine fluorescence, ANS fluorescence, and, for certain reactions, far ultraviolet (UV) CD. The folding was started from the unfolded state in 3.45 M GuHCl, the acid denatured state at pH 1.8 ± 0.2, an acid molten globule intermediate I1 (pH 3.3 ± 0.1, low salt), a more structured acid molten globule intermediate I2 (pH 3.3 ± 0.1, 0.42 M NaCl), and the TFE state (pH 3.3 ± 0.1, 42% TFE). It has been found that all denatured states, including GuHCl, TFE, acid denatured and acid molten globule intermediate I1, fold with the same kinetics, provided that the final conditions are identical. This does not apply to the second acid molten globule intermediate I2, which demonstrates a higher rate of folding by a factor of 270. Different energy of activation and pH dependence were found for folding from states I1 or I2. Proteins 32:304-313, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 169
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 324-333 
    ISSN: 0887-3585
    Keywords: normal mode analysis of a complex ; subtilisin-eglin c complex ; dynamics of a complex ; binding free energy ; internal and external motions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Normal mode analysis of subtilisin-eglin c complex was performed to investigate the dynamics at the interface between the enzyme and the inhibitor. The internal motions of the complex calculated from the normal modes were divided into three parts: the internal motions changing the shape of each molecule, the external rigid-body motions changing their mutual dispositions, and the coupling between the internal and external motions. From the results of the analysis, the following characteristic features were found in the dynamics at the interface regions: 1) negative correlation between the internal and external motions within each molecule, and 2) positive correlation between the external motions of the two molecules. The former decreases the apparent amplitudes of motions at the interface. The latter minimizes the interference between individual motions of the two molecules. These dynamic characteristics allow the enzyme and the inhibitor to move as freely as possible. This finding suggests that the experimental evidence of the large entropy gain on binding should be attributed not only to strong hydrophobic interactions, but also to the dynamic structure of the complex, which is found to minimize an unavoidable loss of the conformational entropy on binding. Proteins 32:324-333, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 136-158 
    ISSN: 0887-3585
    Keywords: lattice models ; landscape theory ; Monte Carlo simulations ; folding funnels ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An important idea that emerges from the energy landscape theory of protein folding is that subtle global features of the protein landscape can profoundly affect the apparent mechanism of folding. The relationship between various characteristic temperatures in the phase diagrams and landmarks in the folding funnel at fixed temperatures can be used to classify different folding behaviors. The one-dimensional picture of a folding funnel classifies folding kinetics into four basic scenarios, depending on the relative location of the thermodynamic barrier and the glass transition as a function of a single-order parameter. However, the folding mechanism may not always be quantitatively described by a single-order parameter. Several other order parameters, such as degree of secondary structure formation, collapse and topological order, are needed to establish the connection between minimalist models and proteins in the laboratory. In this article we describe a simple multidimensional funnel based on two-order parameters that measure the degree of collapse and topological order. The appearance of several different “mechanisms” is illustrated by analyzing lattice models with different potentials and sequences with different degrees of design. In most cases, the two-dimensional analysis leads to a classification of mechanisms totally in keeping with the one-dimensional scheme, but a topologically distinct scenario of fast folding with traps also emerges. The nature of traps depends on the relative location of the glass transition surface and the thermodynamic barrier in the multidimensional funnel. Proteins 32:136-158, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 171
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 334-349 
    ISSN: 0887-3585
    Keywords: antifungal ; thionin ; NMR ; structure ; scorpion ; toxins ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The three-dimensional structure of the Sorghum bicolor seed protein γ-thionin SIα1 has been determined by 2D 1H nuclear magnetic resonance (NMR) spectroscopy. The secondary structure of this 47-residue antifungal protein with four disulphide bridges consists of a three-stranded antiparallel sheet and one helix. The helix is tethered to the sheet by two disulphide bridges which link two successive turns of the helix to alternate residues i, i + 2 in one strand. Possible binding sites for antifungal activity are discussed. The same fold has been observed previously in several scorpion toxins. Proteins 32:334-349, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 172
    ISSN: 0887-3585
    Keywords: antivirals ; Zovirax ; drug target ; drug binding ; enzyme structure ; intermolecular interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Antiherpes therapies are principally targeted at viral thymidine kinases and utilize nucleoside analogs, the triphosphates of which are inhibitors of viral DNA polymerase or result in toxic effects when incorporated into DNA. The most frequently used drug, aciclovir (Zovirax), is a relatively poor substrate for thymidine kinase and high-resolution structural information on drugs and other molecules binding to the target is therefore important for the design of novel and more potent chemotherapy, both in antiherpes treatment and in gene therapy systems where thymidine kinase is expressed. Here, we report for the first time the binary complexes of HSV-1 thymidine kinase (TK) with the drug molecules aciclovir and penciclovir, determined by X-ray crystallography at 2.37 Å resolution. Moreover, from new data at 2.14 Å resolution, the refined structure of the complex of TK with its substrate deoxythymidine (R = 0.209 for 96% of all data) now reveals much detail concerning substrate and solvent interactions with the enzyme. Structures of the complexes of TK with four halogen-containing substrate analogs have also been solved, to resolutions better than 2.4 Å. The various TK inhibitors broadly fall into three groups which together probe the space of the enzyme active site in a manner that no one molecule does alone, so giving a composite picture of active site interactions that can be exploited in the design of novel compounds. Proteins 32:350-361, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 173
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 175-189 
    ISSN: 0887-3585
    Keywords: pairwise statistics ; secondary structure ; nonlocal interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A statistical analysis was performed to determine to what extent an amino acid determines the identity of its neighbors and to what extent this is determined by the structural environment. Log-linear analysis was used to discriminate chance occurrence from statistically meaningful correlations. The classification of structures was arbitrary, but was also tested for significance. A list of statistically significant interaction types was selected and then ranked according to apparent importance for applications such as protein design. This showed that, in general, nonlocal, through-space interactions were more important than those between residues near in the protein sequence. The highest ranked nonlocal interactions involved residues in β-sheet structures. Of the local interactions, those between residues i and i + 2 were the most important in both α-helices and β-strands. Some surprisingly strong correlations were discovered within β-sheets between residues and sites sequentially near to their bridging partners. The results have a clear bearing on protein engineering studies, but also have implications for the construction of knowledge-based force fields. Proteins 32:175-189, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 190-199 
    ISSN: 0887-3585
    Keywords: protein structure ; solvent accessibility ; protein sequence ; protein structure prediction ; protein folding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: An easy and uncomplicated method to predict the solvent accessibility state of a site in a multiple protein sequence alignment is described. The approach is based on amino acid exchange and compositional preference matrices for each of three accessibility states: buried, exposed, and intermediate. Calculations utilized a modified version of the 3D―ali databank, a collection of multiple sequence alignments anchored through protein tertiary structural superpositions. The technique achieves the same accuracy as much more complex methods and thus provides such advantages as computational affordability, facile updating, and easily understood residue substitution patterns useful to biochemists involved in protein engineering, design, and structural prediction. The program is available from the authors; and, due to its simplicity, the algorithm can be readily implemented on any system. For a given alignment site, a hand calculation can yield a comparative prediction. Proteins 32:190-199, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 381-396 
    ISSN: 0887-3585
    Keywords: protein cavity ; molecular dynamics simulation ; free energy calculation ; particle insertion ; protein hydration ; protein ligand binding ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Hydration of protein cavities influences protein stability, dynamics, and function. Protein active sites usually contain water molecules that, upon ligand binding, are either displaced into bulk solvent or retained to mediate protein-ligand interactions. The contribution of water molecules to ligand binding must be accounted for to compute accurate values of binding affinities. This requires estimation of the extent of hydration of the binding site. However, it is often difficult to identify the water molecules involved in the binding process when ligands bind on the surface of a protein. Cytochrome P450cam is, therefore, an ideal model system because its substrate binds in a buried active site, displacing partially disordered solvent, and the protein is well characterized experimentally. We calculated the free energy differences for having five to eight water molecules in the active site cavity of the unliganded enzyme from molecular dynamics simulations by thermodynamic integration employing a three-stage perturbation scheme. The computed free energy differences between the hydration states are small (within 12 kJ mol-1) but distinct. Consistent with the crystallographic determination and studies employing hydrostatic pressure, we calculated that, although ten water molecules could in principle occupy the volume of the active site, occupation by five to six water molecules is thermodynamically most favorable. Proteins 32:381-396, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 362-380 
    ISSN: 0887-3585
    Keywords: molecular dynamics simulations ; mutagenesis ; aminoacyl-tRNA synthetase ; ATP ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Histidyl-tRNA synthetase (HisRS) differs from other class II aminoacyl-tRNA synthetases (aaRS) in that it harbors an arginine at a position where the others bind a catalytic Mg2+ ion. In computer experiments, four mutants of HisRS from Escherichia coli were engineered by removing the arginine and introducing a Mg2+ ion and residues from seryl-tRNA synthetase (SerRS) that are involved in Mg2+ binding. The mutants recreate an active site carboxylate pair conserved in other class II aaRSs, in two possible orders: Glu-Asp or Asp-Glu, replacing Glu-Thr in native HisRS. The mutants were simulated by molecular dynamics in complex with histidyl-adenylate. As controls, the native HisRS was simulated in complexes with histidine, histidyl-adenylate, and histidinol. The native structures sampled were in good agreement with experimental structures and biochemical data. The two mutants with the Glu-Asp sequence showed significant differences in active site structure and Mg2+ coordination from SerRS. The others were more similar to SerRS, and one of them was analyzed further through simulations in complex with histidine, and His+ATP. The latter complex sampled two Mg2+ positions, depending on the conformation of a loop anchoring the second carboxylate. The lowest energy conformation led to an active site geometry very similar to SerRS, with the principal Mg2+ bridging the α- and β-phosphates, the first carboxylate (Asp) coordinating the ion through a water molecule, and the second (Glu) coordinating it directly. This mutant is expected to be catalytically active and suggests a basis for the previously unexplained conservation of the active site Asp-Glu pair in class II aaRSs other than HisRS. Proteins 32:362-380, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 414-424 
    ISSN: 0887-3585
    Keywords: P1 nuclease ; X-ray crystallography ; substrate recognition ; catalytic mechanism ; thiophosphorylated oligonucleotides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The reaction mechanism of nuclease P1 from Penicillium citrinum has been investigated using single-stranded dithiophosphorylated di-, tetra-, and hexanucleotides as substrate analogs. The complexes crystallize in tetragonal and orthorhombic space groups and have been solved by molecular replacement. The high resolution structures give a clear picture of base recognition by P1 nuclease at its two nucleotide-binding sites, especially the 1.8 Å structure of a P1-tetranucleotide complex which can be considered a P1-product complex. The observed binding modes are in agreement with a catalytic mechanism where the two closely spaced zinc ions activate the attacking water while the third, more exposed zinc ion stabilizes the leaving 03' oxyanion. Stacking as well as hydrogen bonding interactions with the base 5' to the cleaved phosphodiester bond are important elements of substrate binding and recognition. Modelling of a productive P1-substrate complex based on the solved structures suggests steric hindrance as the likely reason for the resistance of Rp-phosphorothioates and phosphorodithioates. Differences with the highly homologous nuclease S1 from Aspargillus oryzae are discussed. Proteins 32:414-424, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 319-319 
    ISSN: 0887-3585
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 311-317 
    ISSN: 0887-3585
    Keywords: alphavirus ; capsid structure ; budding ; dioxane ; assembly ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Alphavirus budding from the plasma membrane is initiated by the specific interaction of the nucleocapsid with the cytoplasmic domain of the glycoprotein E2. It was proposed (Lee et al., Structure 4:531-541, 1996) that binding of the capsid protein residues 108 to 110 (the “N-terminal arm” residues) to a hydrophobic pocket on the surface of the neighboring capsid protein in the crystal structure mimics the binding of the E2 C-terminal residues into this pocket. In addition, structural comparisons of wild-type and mutant Sindbis virus capsid protein (SCP) and Semliki Forest virus capsid protein suggested that budding is associated with a switch between two conformations of the hydrophobic pocket. To test the proposed mechanism, SCP(114-264), which is missing the N-terminal arm, was crystallized to examine the pocket conformation when the pocket is empty. However, the pocket was occupied by dioxane molecules from the crystallization solution. The pocket conformation was the same as that when it was occupied by the N-terminal arm, demonstrating that the pocket favors binding ligands of appropriate size and shape. Proteins 33:311-317, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 329-342 
    ISSN: 0887-3585
    Keywords: families ; solvent accessibility ; substitutions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The 3D structural comparison of families of divergent homologous domains revealed two main populations of hydrophobic amino acids, one with a low and the other with a significantly higher mean solvent accessibility, allowing two regions of the core of protein globular domains to be distinguished. The side chains of hydrophobic amino acids in topologically conserved positions (positions in the structural alignment where only hydrophobic amino acids are found), which we call topohydrophobic positions, are considerably less dispersed than those of the other amino acids (hydrophobic or not). Mean distances between gravity centers of amino acids in topohydrophobic positions are significantly shorter than those for non-topohydrophobic positions and show that the corresponding amino acids are almost all in direct contact in the inner core of globular domains. This study also showed that the small number of topohydrophobic positions is a characteristic of the structural differences between proteins of a family. This criterion is independent of the sequence identity between the sequences and of the root-mean-square distance between their corresponding structures. Using sensitive sequence alignment processes it will be possible, for many protein families, to identify topohydrophobic positions from sequences only. Proteins 33:329-342, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 343-357 
    ISSN: 0887-3585
    Keywords: α-helix ; polyalanine ; polyglutamine ; folding ; NEIMO ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The kinetics of α-helix formation in polyalanine and polyglycine eicosamers (20-mers) were examined using torsional-coordinate molecular dynamics (MD). Of one hundred fifty-five MD experiments on extended (Ala)20 carried out for 0.5 ns each, 129 (83%) formed a persistent α-helix. In contrast, the extended state of (Gly)20 only formed a right-handed α-helix in two of the 20 MD experiments (10%), and these helices were not as long or as persistent as those of polyalanine.These simulations show helix formation to be a competition between the rates of (a) forming local hydrogen bonds (i.e. hydrogen bonds between any residue i and its i + 2, i + 3, i + 4, or i + 5th neighbor) and (b) forming nonlocal hydrogen bonds (HBs) between residues widely separated in sequence.Local HBs grow rapidly into an α-helix; but nonlocal HBs usually retard helix formation by “trapping” the polymer in irregular, “balled-up” structures. Most trajectories formed some nonlocal HBs, sometimes as many as eight. But, for (Ala)20, most of these eventually rearranged to form local HBs that lead to α-helices. A simple kinetic model describes the rate of converting nonlocal HBs into α-helices.Torsional-coordinate MD speeds folding by eliminating bond and angle degrees of freedom and reducing dynamical friction. Thus, the observed 210 ps half-life for helix formation is likely to be a lower bound on the real rate. However, we believe the sequential steps observed here mirror those of real systems. Proteins 33:343-357, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 275-286 
    ISSN: 0887-3585
    Keywords: nucleotide-binding domain ; CFTR ; multidrug resistance ; structure prediction ; P-glycoprotein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: ABC transporters are a large superfamily of integral membrane proteins involved in ATP-dependent transport across biological membranes. Members of this superfamily play roles in a number of phenomena of biomedical interest, including cystic fibrosis (CFTR) and multidrug resistance (P-glycoprotein, MRP). Most ABC transporters are predicted to consist of four domains, two membrane-spanning domains and two cytoplasmic domains. The latter contain conserved nucleotide-binding motifs. Attempts to determine the structure of ABC transporters and of their separate domains are in progress but have not yet been successful.   To aid structure determination and possibly learn more about the domain boundaries, we set out to model nucleotide-binding domains (NBDs) of ABC transporters based on a known structure. Previous attempts to predict the 3D structure of NBDs were based solely on sequence similarity with known nucleotide-binding folds. We have analyzed the sequences of a number of nucleotide-binding domains with the algorithm THREADER, developed by D.T. Jones, and a possible fold was found in the structure of aspartate aminotransferase. We present a model for the N-terminal NBD of CFTR, based on the large domain of the A chain of aspartate aminotransferase. The model is refined using multiple sequence alignment, secondary structure prediction, and 3D-1D profiles. Our model seems to be in good agreement with known properties of nucleotide-binding domains and has some appealing characteristics compared with the previous models. Proteins 30:275-286, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 183
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 295-308 
    ISSN: 0887-3585
    Keywords: hydrogen exchange mechanism ; denaturants ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Equilibrium amide hydrogen exchange studies of barstar have been carried out at pH 6.7, 32° SDC using one- and two-dimensional nuclear magnetic resonance. An unusually large fraction of the backbone amide hydrogens of barstar exchange too fast to be measured, and the exchange rates of only fifteen slow-exchanging amide sites including indole amides of two tryptophans could be measured in the presence of 0 to 1.8 M guanidine hydrochloride (GdnHCl). Measurement of exchange occurring in tens of seconds in the unfolding transition region was possible by the use of a fast stopped-flow mixing method. The observed exchange rates have been simulated in the EX2 limit according to a two-process model that incorporates two exchange-competent states: a transiently unfolded state (U*) in which many amide hydrogens are completely accessible to solvent-exchange, and a near-native locally unfolded state (N*), in which only one or a few amide hydrogens are completely accessible to solvent-exchange. The two-process model appears to account for the observed exchange behavior over the entire range of GdnHCl concentrations studied. For several measurable slow-exchanging amide hydrogens, the free energies of production of exchange-competent states from the exchange-incompetent native state are significantly higher than the free-energy of production of the equilibrium unfolded state from the native state, when the latter is determined from circular dichroism- or fluorescence-monitored equilibrium unfolding curves. The result implies that U*, which forms transiently in the strongly native-like conditions used for the hydrogen exchange studies, is higher in energy than the equilibrium-unfolded state. The higher energy of this transiently unfolded exchange-competent state can be attributed to either proline isomerization or to the presence of residual structure. On the basis of the free energies of production of exchange-competent states, the measured amide sites of barstar appear to define two structural subdomains - a three-helix unit and a two-β-strand unit in the core of the protein. Proteins 30:295-308, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 460-474 
    ISSN: 0887-3585
    Keywords: major histocompatibility complex ; antigen ; stochastic models ; machine learning ; protein docking ; computational biology ; immunology ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The binding of a major histocompatibility complex (MHC) molecule to a peptide originating in an antigen is essential to recognizing antigens in immune systems, and it has proved to be important to use computers to predict the peptides that will bind to an MHC molecule. The purpose of this paper is twofold: First, we propose to apply supervised learning of hidden Markov models (HMMs) to this problem, which can surpass existing methods for the problem of predicting MHC-binding peptides. Second, we generate peptides that have high probabilities to bind to a certain MHC molecule, based on our proposed method using peptides binding to MHC molecules as a set of training data. From our experiments, in a type of cross-validation test, the discrimination accuracy of our supervised learning method is usually approximately 2-15% better than those of other methods, including backpropagation neural networks, which have been regarded as the most effective approach to this problem. Furthermore, using an HMM trained for HLA-A2, we present new peptide sequences that are provided with high binding probabilities by the HMM and that are thus expected to bind to HLA-A2 proteins. Peptide sequences not shown in this paper but with rather high binding probabilities can be obtained from the author (E-mail: mami@ccm.cl.nec.co.jp). Proteins 33:460-474, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 185
    ISSN: 0887-3585
    Keywords: mass spectrometry ; time-of-flight ; nanoflow electrospray ; transthyretin ; retinol binding protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Complexes formed between transthyretin and retinol-binding protein prevent loss of retinol from the body through glomerular filtration. The interactions between these proteins have been examined by electrospray ionization combined with time-of-flight mass analysis. Conditions were found whereby complexes of these proteins, containing from four to six protein molecules with up to two ligands, are preserved in the gas phase. Analysis of the mass spectra of these multimeric species gives the overall stoichiometry of the protein subunits and provides estimates for solution dissociation constants of 1.9 ± 1.0 × 10-7 M for the first and 3.5 ± 1.0 × 10-5 M for the second retinol-binding protein molecule bound to a transthyretin tetramer. Dissociation of these protein assemblies within the gas phase of the mass spectrometer shows that each retinol-binding protein molecule interacts with three transthyretin molecules. Mass spectral analysis illustrates not only a correlation with solution behavior and crystallographic data of a closely related protein complex but also exemplifies a general method for analysis of multi-protein assemblies. Proteins Suppl. 2:3-11, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 186
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 12-21 
    ISSN: 0887-3585
    Keywords: non-covalent interaction ; DNA ; peptides ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: DNA-histone interaction facilitates packaging of huge amounts of DNA in the confined space of the nucleus. The importance of this interaction underscores the need for new analytical techniques to acquire a better understanding of nuclear dynamics. Electrospray-ionization mass spectrometry made it possible to investigate non-covalently-bound biopolymers. We are enlarging the scope of available analytical tools by studying non-covalent interaction between single and double stranded DNA and peptides with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The interaction is an ionic one, between the negatively charged sugar-phosphate backbone of single stranded DNA and positively charged side chains of Arg- and Lys-rich peptides as demonstrated by Vertes' group1 with the dipeptides Arg-Lys and His-His. We replicated Lecchi and Pannell's work,2 which showed that double stranded DNA could be seen by MALDI using 6-aza-2-thiothymine (ATT) as matrix. We tried various peptides and found that as was demonstrated in DNA-histone interaction, a certain ratio and arrangement of basic residues was needed in order to generate ionic binding between DNA and peptide. We tested various single and double stranded DNA with the peptide of choice, and found that other variables such as pH value of solution, ionic strength, and matrix system did play a role. Proteins Suppl. 2:12-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 187
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 22-27 
    ISSN: 0887-3585
    Keywords: secondary structure ; β-pleated sheet ; mass spectrometry ; molecular mechanics calculations ; electrostatic interactions ; hydrogen bonds ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The stability of single β-strands and multistrand β-pleated sheets as elements of secondary structure is examined in the absence of intermolecular interactions. Such experimental conditions (e.g., complete removal of solvent molecules and counterions) are achieved by placing the peptide ions in the gas phase. The metastable multiply- charged peptide ions produced by electrospray ionization undergo unimolecular dissociation. Intercharge repulsion within the precursor ions gives rise to the elevated kinetic energy of fragment ions, which is measured using Mass-analyzed Ion Kinetic Energy (MIKE) spectrometry. Intercharge distances calculated based on these measurements are compared to the numbers derived from molecular mechanics calculations with charge site assignments based on relative proton affinities. Evidence is presented suggesting that single β-strands form collapsed structures in the absence of solvents, while multistrand β-pleated sheets are likely to retain “native-like” secondary structures under the same conditions. These results indicate that intramolecular hydrogen bonds are the major factor determining the three-dimensional arrangements of polypeptides in the gas phase, compensating both long- and short-range electrostatic repulsions. This is in good agreement with our earlier findings (Proteins 27:165-170, 1997) concerning stability of helical conformation of melittin in the absence of solvent. Proteins Suppl. 2:22-27, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 188
    ISSN: 0887-3585
    Keywords: electrospray ionization mass spectrometry ; noncovalent complexes ; protease ; integrase ; nucleocapsid protein ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Mass spectrometry (MS) with electrospray ionization (ESI) has shown utility for studying noncovalent protein complexes, as it offers advantages in sensitivity, speed, and mass accuracy. The stoichiometry of the binding partners can be easily deduced from the molecular weight measurement. In many examples of protein complexes, the gas phase-based measurement is consistent with the expected solution phase binding characteristics. This quality suggests the utility of ESI-MS for investigating solution phase molecular interactions. Complexes composed of proteins from the human immunodeficiency virus (HIV) have been studied using ESI-MS. Multiply charged protein dimers from HIV integrase catalytic core (F185K) and HIV protease have been observed. Furthermore, the ternary complex between HIV protease dimer and inhibitor pepstatin A was studied as a function of solution pH. Zinc binding to zinc finger-containing nucleocapsid protein (NCp7) and the NCp7-psi RNA 1:1 stoichiometry complex was also studied by ESI-MS. No protein-RNA complex was observed in the absence of zinc, consistent with the role of the zinc finger motifs for RNA binding. Proteins Suppl. 2:28-37, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 33 (1998), S. 38-49 
    ISSN: 0887-3585
    Keywords: MS/MS electrospray mass spectrometry ; CD ; human immunodeficiency virus (HIV) ; glycoprotein 41,000 (gp41) ; N-terminal domain ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The N-terminal domain of human immunodeficiency virus (HIV)-1 glycoprotein 41,000 (FP; residues 1-23; NH2-AVGIGALFLGFLGAAGSTMGARS-CONH2) is involved in the fusion and cytolytic processes underlying viral-cell infection. Here, we use circular dichroism (CD) spectroscopy, along with electrospray ionization (ESI) mass spectrometry and tandem (MS/MS) mass spectrometry during the course of hydrogen/deuterium exchange, to probe the local conformations of this synthetic peptide in two membrane mimics. Since amino acids that participate in defined secondary structure (i.e., α-helix or β-sheet) exchange amido hydrogens more slowly than residues in random structures, deuterium exchange was combined with CD spectroscopy to map conformations to specific residues. For FP suspended in the highly structure-promoting solvent hexafluoroisopropanol (HFIP), CD spectra indicated high α-helix and disordered structures, whereas ESI and MS/MS mass spectrometry indicated that residues 5-15 were α-helical and 16-23 were disordered. For FP suspended in the less structure-promoting solvent trifluoroethanol (TFE), CD spectra showed lower α-helix, with ESI and MS/MS mass spectrometry indicating that only residues 9-15 participated in the α-helix. These results compare favorably with previous two-dimensional nuclear magnetic resonance studies on the same peptide. Proteins Suppl. 2:38-49, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 190
    ISSN: 0887-3585
    Keywords: MALDI mass spectrometric peptide mapping ; membrane proteins ; in situ gel digestion ; porin ; permeability transition ; noncovalent complexes ; protein interactions ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Mass spectrometric peptide mapping, particularly by matrix-assisted laser desorption-ionization (MALDI-MS), has recently been shown to be an efficient tool for the primary structure characterization of proteins. In combination with in situ proteolytic digestion of proteins separated by one- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mass spectrometric peptide mapping permits identification of proteins from complex mixtures such as cell lysates. In this study we have investigated several ion channel membrane proteins (porins) and their supramolecular assembly in mitochondrial membranes by peptide mapping in solution and upon digestion in the gel matrix. Porins are integral membrane proteins serving as nonspecific diffusion pores or as specific systems for the transport of substrates through bacterial and mitochondrial membranes. The well-characterized porin from Rhodobacter capsulatus (R.c.-porin) has been found to be a native trimeric complex by the crystal structure and was used as a model system in this study. R.c.-porin was characterized by MALDI-MS peptide mapping in solution, and by direct in situ-gel digestion of the trimer. Furthermore, in this study we demonstrate the direct identification of the noncovalent complex between a mitochondrial porin and the adenine nucleotide translocator from rat liver, by MALDI-MS determination of the specific peptides due to both protein sequences in the SDS-PAGE gel band. The combination of native gel electrophoresis and mass spectrometric peptide mapping of the specific gel bands should be developed as a powerful tool for the molecular identification of protein interactions. Proteins Suppl. 2:63-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 191
    ISSN: 0887-3585
    Keywords: M-CSF ; cytokine ; c-fms ; folding intermediates ; tryptophan fluorescence ; selective chemical modification ; melarsen oxide ; ESI-MS ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Melarsen oxide [p-(4,6-diamino-1,3,5-triazin-2-yl)aminophenylarsonous acid (MEL)], which selectively bridges spatially neighboring bis-cysteinyl residues in (reduced) proteins, was used to trap folding intermediates chemically during 1) time-dependent renaturation of recombinant human macrophage colony-stimulating factor (rhM-CSF); by redox refolding in vitro; 2) reductive unfolding in the presence of the trapping reagent; and 3) denaturing unfolding reactions in urea and guanidinium hydrochloride. Characterization of intermediates from folding and unfolding reactions was performed by electrospray ionization mass spectometry (ESI-MS). In all folding and unfolding reactions a characteristic dimeric intermediate with two attached melarsen oxide (MEL) groups was observed, suggesting that these rhM-CSF β species were important refolding intermediates. These intermediates presented a characteristic “charge structure” in ESI spectra with a most abundant 26+ charged molecular ion whereas the mature homodimeric rhM-CSF β showed a most abundant 23+ molecular ion, indicating that the final product was more compact. The major locations of the two MEL groups were identified by mass spectrometric peptide mapping at cysteine residues C157 and C159 from each monomer. Cysteine residues C7 and C90 were minor modification sites. The mass spectrometric results from the in vitro folding reactions of rhM-CSF β are in agreement with intrinsic tryptophan fluorescence measurements and are consistent with the folding pathway that starts with a fully reduced monomer (R), includes partially folded monomeric intermediates (M) and dimeric intermediates (D), and yields a final product with the native tertiary structure (N): 2R ⇒ 2M ⇒ D ⇒ N. Our results show that selective chemical trapping of bis-thiol groups of proteins with MEL permits study of folding pathways by mass spectrometric structure characterization of intermediates with otherwise transient conformations. Proteins Suppl. 2:50-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 192
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 309-320 
    ISSN: 0887-3585
    Keywords: crosslinked hemoglobin ; protein crystallography ; T-state hemoglobin ; macromolecular modeling ; three-dimensional structure ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The crystal structure of human T state hemoglobin crosslinked with bis(3,5-dibromo-salicyl) sebacate has been determined at 1.9 Å resolution. The final crystallographic R factor is 0.168 with root-mean-square deviations (RMSD) from ideal bond distance of 0.018 Å. The 10-carbon sebacyl residue found in the β cleft covalently links the two βLys82 residues. The sebacyl residue assumes a zigzag conformation with cis amide bonds formed by the NZ atoms of βLys82's and the sebacyl carbonyl oxygens. The atoms of the crosslink have an occupancy factor of 1.0 with an average temperature factor for all atoms of 34 Å2. An RMSD of 0.27 for all CA's of the tetramer is observed when the crosslinked deoxyhemoglobin is compared with deoxyhemoglobin refined by using a similar protocol, 2HHD [Fronticelli et al. J. Biol. Chem. 269:23965-23969, 1994]. Thus, no significant perturbations in the tertiary or quaternary structure are introduced by the presence of the sebacyl residue. However, the sebacyl residue does displace seven water molecules in the β cleft and the conformations of the β1Lys82 and β2Lys82 are altered because of the crosslinking. The carbonyl oxygen that is part of the amide bond formed with the NZ of β2Lys82 forms a hydrogen bond with side chain of β2Asn139 that is in turn hydrogen-bonded to the side chain of β2Arg104. A comparison of the observed conformation with that modeled [Bucci et al. Biochemistry 35:3418-3425, 1996] shows significant differences. The differences in the structures can be rationalized in terms of compensating changes in the estimated free-energy balance, based on differences in exposed surface areas and the observed shift in the side-chain hydrogen-bonding pattern involving β2Arg104, β2Asn139, and the associated sebacyl carbonyl group. Proteins 30:309-320, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 193
    ISSN: 0887-3585
    Keywords: protein stability ; cold shock domain ; nucleic acid binding ; hydrophobic effect ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: In the cold-shock protein CspB from Bacillus subtilis three exposed Phe residues (F15, F17, and F27) are essential for its function in binding to single-stranded nucleic acids. Usually, the hydrophobic Phe side chains are buried in folded proteins. We asked here whether the exposition of the essential Phe residues could be a cause for the very low conformational stability of CspB. Urea-induced and heat-induced equilibrium unfolding transitions were measured for three mutants of CspB, where Phe 15, Phe 17, and Phe 27 were individually replaced by alanine. Unexpectedly, all three mutations strongly destabilized CspB. The aromatic side chains of Phe 15, Phe 17, and Phe 27 in the active site are thus important for both binding to nucleic acids and conformational stability. There is no compromise between function and stability in the active site. Model calculations indicate that, although they are partially exposed to solvent, all three Phe residues nevertheless lose accessible surface upon folding, and this should favor the native state. A different result is obtained with the F38A variant. Phe 38 is hyperexposed in native CspB, and its substitution by Ala is in fact stabilizing. Proteins 30:401-406, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 194
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 407-423 
    ISSN: 0887-3585
    Keywords: binding free energy ; electrostatics ; group contributions ; thermodynamic cycle ; solvation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The challenge of evaluating absolute binding free energies of protein-protein complexes is addressed using the scaled Protein Dipoles Langevin Dipoles (PDLD/S) model in combination with the Linear Response Approximation (LRA). This is done by taking the complex between Rap1A (Rap) and the p21ras binding domain of c-Raf (Raf-RBD) (Nassar et al., Nature 375:554-560, 1995) as a model system. Several formulations and different thermodynamic cycles are explored taking advantage of the LRA method and considering the protein reorganization during complex formation. The performance of different approximations is examined by comparing the calculated and observed absolute binding energies for the native complex and some of its mutants. The evaluation of the contributions of individual residues to the binding free energy, which is referred to here as group contributions is also examined. Special attention is paid to the role of the “dielectric constant,” εin which is in fact a scaling factor that represents the contributions that are treated implicitly. It is found that explicit consideration of protein relaxation is crucial for obtaining reasonable results with small values of εin, but it is also found that such a treatment of protein-protein interactions is very challenging and does not always give stable results. This indicates that more advanced explicit calculations should be based on experimentally determined structures of both the complex and the isolated proteins. Nevertheless, it is demonstrated that the qualitative trend of the effect of mutations can be reproduced by considering the effect of protein reorganization implicitly, using εin ˜25 for ionized residues and εin ˜4 for polar residues. Thus, it is concluded that an explicit treatment of solvent relaxation (which is common to current continuum models) does not provide sufficient compensation for turning off the charges of ionized residues on the interaction surface of the Raf-RBD/Rap complex. Representing the missing contribution by large εin can, of course, reproduce the observed effect of ionized residues, but now the contribution of uncharged residues will be largely underestimated. Regardless of these conceptual problems, it is established that a very simple nonrelaxed approach, where the relaxation of both the protein and the solvent are considered implicitly, can provide an effective qualitative way for evaluating group contributions, using large and small values for εin of ionized and neutral residues, respectively. As much as the actual system studied is concerned we find that more residues than generally assumed play a role in Raf-RBD/Rap interaction. This includes residues that are not located at the protein-protein interaction surface. These residues contribute to the binding energy through direct charge-charge interaction without leading to drastic structural changes. The overall contribution of the surface residues is quite significant since Raf and Rap are positively and negatively charged, respectively, and their charges are distributed along the interaction site between the two proteins. Proteins 30:407-423, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 424-434 
    ISSN: 0887-3585
    Keywords: protease II ; intrinsic fluorescence ; ionic strength ; heat denaturation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Oligopeptidase B is a member of a new serine peptidase family, unrelated to the trypsin and subtilisin families. It is a potential processing enzyme of prokaryotes, being very specific for the basic amino acid pairs of polypeptides. An understanding of the kinetics of the enzyme requires the examination of its conformational stability under a variety of conditions. To this end, the enzyme was cloned from Escherichia coli HB101 by the PCR method, expressed with high yield in E. coli XL1-Blue, and purified essentially in two chromatographic steps. The denatured enzyme failed to refold, which precluded the calculation of free energy of stability, ΔG0. Therefore, the unfolding rates were measured to probe the stability against urea, pH, and heat. Denaturation processes were monitored by intrinsic fluorescence, circular dichroism, and activity measurements. A static method, intrinsic fluorescence vs. pH, was indicative of significant changes in the tertiary structure of the enzyme pH 〈 6 and pH 〉 8.5. The more sensitive dynamic methods, unfolding rates in urea and inactivation rates at high temperature, revealed increased flexibility in the protein structure between pH 6 and pH 7, where the static method did not show significant changes. Inactivation of the enzyme in the acidic pH range correlated with the results obtained with the static rather than with the dynamic method. Acid denaturation at pH 3 was markedly retarded by 1 M NaCl. Against heat inactivation the enzyme was also considerably protected in the presence of salt, and the higher enthalpy and entropy of activation suggested the importance of hydration in the stabilization. The kinetics of unfolding followed single-exponential decay under strongly denaturing conditions (high urea concentration or high temperature), but deviated from the apparently two-state mechanism at low urea concentrations and at slightly acidic pH. The results indicate that under harsher denaturing conditions there is a single rate-limiting step in unfolding, whereas under milder conditions partly unfolded intermediates are populated. Proteins 30:424-434, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 113-135 
    ISSN: 0887-3585
    Keywords: HMG proteins ; protein-DNA complex ; HMG-box ; nonsequence-specificity ; molecular dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Non-histone chromosomal proteins are an important part of nuclear structure and function due to their ability to interact with DNA to form and modulate chromatin structure and regulate gene expression. However, the understanding of the function of chromosomal proteins at the molecular level has been hampered by the lack of structures of chromosomal protein-DNA complexes. We have carried out a molecular dynamics modeling study to provide insight into the mode of DNA binding to the chromosomal HMG-domain protein, HMG-D. Three models of a complex of HMG-D bound to DNA were derived through docking the protein to two different DNA fragments of known structure. Molecular dynamics simulations of the complexes provided data indicating the most favorable model. This model was further refined by molecular dynamics simulation and extensively analyzed. The structure of the corresponding HMG-D-DNA complex exhibits many features seen in the NMR structures of the sequence-specific HMG-domain-DNA complexes, lymphoid enhancer factor 1 (LEF-1) and testis determining factor (SRY). The model reveals differences from these known structures that suggest how chromosomal proteins bind to many different DNA sequences with comparable affinity. Proteins 30:113-135, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 197
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 144-154 
    ISSN: 0887-3585
    Keywords: hinge bending ; X-ray conformers ; Chasles' theorem ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Methods developed originally to analyze domain motions from simulation [Proteins 27:425-437, 1997] are adapted and extended for the analysis of X-ray conformers and for proteins with more than two domains. The method can be applied as an automatic procedure to any case where more than one conformation is available. The basis of the methodology is that domains can be recognized from the difference in the parameters governing their quasi-rigid body motion, and in particular their rotation vectors. A clustering algorithm is used to determine clusters of rotation vectors corresponding to main-chain segments that form possible dynamic domains. Domains are accepted for further analysis on the basis of a ratio of interdomain to intradomain fluctuation, and Chasles' theorem is used to determine interdomain screw axes. Finally residues involved in the interdomain motion are identified. The methodology is tested on citrate synthase and the M6I mutant of T4 lysozyme. In both cases new aspects to their conformational change are revealed, as are individual residues intimately involved in their dynamics. For citrate synthase the beta sheet is identified to be part of the hinging mechanism. In the case of T4 lysozyme, one of the four transitions in the pathway from the closed to the open conformation, furnished four dynamic domains rather than the expected two. This result indicates that the number of dynamic domains a protein possesses may not be a constant of the motion. Proteins 30:144-154, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 30 (1998), S. 215-227 
    ISSN: 0887-3585
    Keywords: molecular dynamics ; protein dynamics ; computer simulation ; Monte Carlo ; Brownian dynamics ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: We present an algorithm for simulating the long time scale dynamics of proteins and other macromolecules. Our method applies the concept of multiple time step integration to the diffusive Langevin equation, in which short time scale dynamics are replaced by friction and noise. The macromolecular force field is represented at atomic resolution. Slow motions are modeled by constrained Langevin dynamics with very large time steps, while faster degrees of freedom are kept in local thermal equilibrium. In the limit of a sufficiently large molecule, our algorithm is shown to reduce the CPU time required by two orders of magnitude. We test the algorithm on two systems, alanine dipeptide and bovine pancreatic trypsin inhibitor (BPTI), and find that it accurately calculates a variety of equilibrium and dynamical properties. In the case of BPTI, the CPU time required is reduced by nearly a factor of 60 compared to a conventional, unconstrained Langevin simulation using the same force field. Proteins 30:215-227, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 199
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 211-222 
    ISSN: 0887-3585
    Keywords: sequential folding ; local structure formation ; coarsed-grained simulations ; knowledge-based potentials ; virtual bond rotations ; misfolded structures ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Complete sets of low-resolution conformations are generated for eight small proteins by rotating the Cα-Cα virtual bonds at selected flexible regions, while the remaining structural elements are assumed to move in rigid blocks. Several filtering criteria are used to reduce the ensemble size and to ensure the sampling of well-constructed conformations. These filters, based on structure and energy constraints deduced from knowledge-based studies, include the excluded volume requirement, the radius of gyration constraint, and the occurrence of sufficiently strong attractive inter-residue potentials to stabilize compact forms. About 8,000 well-constructed decoys or “probable folds” (PFs) are constructed for each protein. A correlation between root-mean-square (rms) deviations from X-ray structure and total energies is observed, revealing a decrease in energy as the rms deviation decreases. The conformation with the lowest energy exhibits an rms deviation smaller than 3.0 Å, in most of the proteins considered. The results are highly sensitive to the choice of flexible regions. A strong tendency to assume native state rotational angles is revealed for some flexible bonds from the analysis of the distributions of dihedral angles in the PFs, suggesting the formation of foldons near these locally stable regions at early folding pathway. Proteins 32:211-222, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 200
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 32 (1998), S. 229-240 
    ISSN: 0887-3585
    Keywords: active-site geometry ; crystal structure ; enzyme action ; protein hydration ; protein mobility ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Earlier studies involving water-mediated transformations in lysozyme and ribonuclease A have shown that the overall movements in the protein molecule consequent to the reduction in the amount of surrounding water are similar to those that occur during enzyme action, thus highlighting the relationship among hydration, plasticity, and action of these enzymes. Monoclinic lysozyme retains its crystallinity even when the level of hydration is reduced further below that necessary for activity (about 0.2 gram of water per gram of protein). In order to gain insights into the role of water in the stability and the plasticity of the protein molecule and the geometrical basis for the loss of activity that accompanies dehydration, the crystal structures of monoclinic lysozyme with solvent contents of 17.6%, 16.9%, and 9.4% were determined and refined. A detailed comparison of these forms with the normally hydrated forms show that the C-terminal segment (residues 88-129) of domain I and the main loop (residues 65-73) in domain II exhibit large deviations in atomic positions when the solvent content is reduced, although the three-dimensional structure is essentially preserved. Many crucial water bridges between different regions of the molecule are conserved in spite of differences in detail, even when the level of hydration is reduced well below that required for activity. The loss of activity that accompany dehydration appears to be caused by the removal of functionally important water molecules from the active-site region and the reduction in the size of the substrate binding cleft. Proteins 32:229-240, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...