Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (123)
  • 1960-1964
  • 1890-1899
  • 2021  (123)
Source
Years
Year
Keywords
Language
  • 101
    Publication Date: 2022-07-19
    Description: This paper studies time-inhomogeneous nonequilibrium diffusion processes, including both Brownian dynamics and Langevin dynamics. We derive upper bounds of the relative entropy production of the time-inhomogeneous process with respect to the transient invariant probability measures. We also study the time reversal of the reverse process in Crooks' fluctuation theorem. We show that the time reversal of the reverse process coincides with the optimally controlled forward process that leads to zero variance importance sampling estimator based on Jarzynski's equality.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2022-07-19
    Description: Calculating averages with respect to probability measures on submanifolds is often necessary in various application areas such as molecular dynamics, computational statistical mechanics and Bayesian statistics. In recent years, various numerical schemes have been proposed in the literature to study this problem based on appropriate reversible constrained stochastic dynamics. In this paper we present and analyse a non-reversible generalisation of the projection-based scheme developed by one of the authors [ESAIM: M2AN, 54 (2020), pp. 391-430]. This scheme consists of two steps - starting from a state on the submanifold, we first update the state using a non-reversible stochastic differential equation which takes the state away from the submanifold, and in the second step we project the state back onto the manifold using the long-time limit of a ordinary differential equation. We prove the consistency of this numerical scheme and provide quantitative error estimates for estimators based on finite-time running averages. Furthermore, we present theoretical analysis which shows that this scheme outperforms its reversible counterpart in terms of asymptotic variance. We demonstrate our findings on an illustrative test example.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2022-07-19
    Description: We present a method based on a generative model for detection of disturbances such as prosthesis, screws, zippers, and metals in 2D radiographs. The generative model is trained in an unsupervised fashion using clinical radiographs as well as simulated data, none of which contain disturbances. Our approach employs a latent space consistency loss which has the benefit of identifying similarities, and is enforced to reconstruct X-rays without disturbances. In order to detect images with disturbances, an anomaly score is computed also employing the Frechet distance between the input X-ray and the reconstructed one using our generative model. Validation was performed using clinical pelvis radiographs. We achieved an AUC of 0.77 and 0.83 with clinical and synthetic data, respectively. The results demonstrated a good accuracy of our method for detecting outliers as well as the advantage of utilizing synthetic data.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2022-07-19
    Description: Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2022-07-19
    Description: We present a method for the quantification of knee alignment from full-leg X-Rays. A state-of-the-art object detector, YOLOv4, was trained to locate regions of interests (ROIs) in full-leg X-Ray images for the hip joint, the knee, and the ankle. Residual neural networks (ResNets) were trained to regress landmark coordinates for each ROI.Based on the detected landmarks the knee alignment, i.e., the hip-knee-ankle (HKA) angle, was computed. The accuracy of landmark detection was evaluated by a comparison to manually placed landmarks for 360 legs in 180 X-Rays. The accuracy of HKA angle computations was assessed on the basis of 2,943 X-Rays. Results of YARLA were compared to the results of two independent image reading studies(Cooke; Duryea) both publicly accessible via the Osteoarthritis Initiative. The agreement was evaluated using Spearman's Rho, and weighted kappa as well as regarding the correspondence of the class assignment (varus/neutral/valgus). The average difference between YARLA and manually placed landmarks was less than 2.0+- 1.5 mm for all structures (hip, knee, ankle). The average mismatch between HKA angle determinations of Cooke and Duryea was 0.09 +- 0.63°; YARLA resulted in a mismatch of 0.10 +- 0.74° compared to Cooke and of 0.18 +- 0.64° compared to Duryea. Cooke and Duryea agreed almost perfectly with respect to a weighted kappa value of 0.86, and showed an excellent reliability as measured by a Spearman's Rho value of 0.99. Similar values were achieved by YARLA, i.e., a weighted kappa value of0.83 and 0.87 and a Spearman's Rho value of 0.98 and 0.99 to Cooke and Duryea,respectively. Cooke and Duryea agreed in 92% of all class assignments and YARLA did so in 90% against Cooke and 92% against Duryea. In conclusion, YARLA achieved results comparable to those of human experts and thus provides a basis for an automated assessment of knee alignment in full-leg X-Rays.
    Language: German
    Type: article , doc-type:article
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2022-07-19
    Description: Three-dimensional medical imaging enables detailed understanding of osteoarthritis structural status. However, there remains a vast need for automatic, thus, reader-independent measures that provide reliable assessment of subject-specific clinical outcomes. To this end, we derive a consistent generalization of the recently proposed B-score to Riemannian shape spaces. We further present an algorithmic treatment yielding simple, yet efficient computations allowing for analysis of large shape populations with several thousand samples. Our intrinsic formulation exhibits improved discrimination ability over its Euclidean counterpart, which we demonstrate for predictive validity on assessing risks of total knee replacement. This result highlights the potential of the geodesic B-score to enable improved personalized assessment and stratification for interventions.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/zip
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2022-07-19
    Description: We present a novel approach for nonlinear statistical shape modeling that is invariant under Euclidean motion and thus alignment-free. By analyzing metric distortion and curvature of shapes as elements of Lie groups in a consistent Riemannian setting, we construct a framework that reliably handles large deformations. Due to the explicit character of Lie group operations, our non-Euclidean method is very efficient allowing for fast and numerically robust processing. This facilitates Riemannian analysis of large shape populations accessible through longitudinal and multi-site imaging studies providing increased statistical power. Additionally, as planar configurations form a submanifold in shape space, our representation allows for effective estimation of quasi-isometric surfaces flattenings. We evaluate the performance of our model w.r.t. shape-based classification of hippocampus and femur malformations due to Alzheimer's disease and osteoarthritis, respectively. In particular, we achieve state-of-the-art accuracies outperforming the standard Euclidean as well as a recent nonlinear approach especially in presence of sparse training data. To provide insight into the model's ability of capturing biological shape variability, we carry out an analysis of specificity and generalization ability.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2022-07-19
    Description: Currently, new materials for knee implants need to be extensively and expensive tested in a knee wear simulator in a realized design. However, using a rolling-sliding test bench, these materials can be examined under the same test conditions but with simplified geometries. In the present study, the test bench was optimized, and forces were adapted to the physiological contact pressure in the knee joint using the available geometric parameters. Various polymers made of polyethylene and polyurethane articulating against test wheels made of cobalt-chromium and aluminum titanate were tested in the test bench using adapted forces based on ISO 14243-1. Polyurethane materials showed distinctly higher wear rates than polyethylene materials and showed inadequate wear resistance for use as knee implant material. Thus, the rolling-sliding test bench is an adaptable test setup for evaluating newly developed bearing materials for knee implants. It combines the advantages of screening and simulator tests and allows testing of various bearing materials under physiological load and tribological conditions of the human knee joint. The wear behavior of different material compositions and the influence of surface geometry and quality can be initially investigated without the need to produce complex implant prototypes of total knee endoprosthesis or interpositional spacers.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2022-07-19
    Description: Long-lived flow patterns in the atmosphere such as weather fronts, mid-latitude blockings or tropical cyclones often induce extreme weather conditions. As a consequence, their description, detection, and tracking has received increasing attention in recent years. Similar objectives also arise in diverse fields such as turbulence and combustion research, image analysis, and medical diagnostics under the headlines of "feature tracking", "coherent structure detection" or "image registration" - to name just a few. A host of different approaches to addressing the underlying, often very similar, tasks have been developed and successfully used. Here, several typical examples of such approaches are summarized, further developed and applied to meteorological data sets. Common abstract operational steps form the basis for a unifying framework for the specification of "persistent structures" involving the definition of the physical state of a system, the features of interest, and means of measuring their persistence.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2022-07-19
    Description: Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’ shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA. Six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) are segmented in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between non-arthritic and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Weighted kappa values of 0.73, 0.72, and 0.78 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.61 and 0.76 for prediction of incident KOA and TKR within one year, respectively. Quantitative features from automated segmentations provide novel biomarkers for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features should be further evaluated, especially as extensions of CNN- based approaches. To foster such developments we make all segmentations publicly available together with this publication.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2022-07-19
    Description: Morphomatics is an open-source Python library for (statistical) shape analysis developed within the geometric data analysis and processing research group at Zuse Institute Berlin. It contains prototype implementations of intrinsic manifold-based methods that are highly consistent and avoid the influence of unwanted effects such as bias due to arbitrary choices of coordinates.
    Language: English
    Type: software , doc-type:Other
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2022-07-19
    Description: Purpose Segmentation of surgical instruments in endoscopic video streams is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods We introduce a teacher–student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the challenges in simulation-to-real unsupervised domain adaptation for endoscopic image segmentation. Results Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusions We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical instrument in the annotation scarce setting.
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2022-09-22
    Description: This article revisits a complexly folded silver scroll excavated in Jerash, Jordan in 2014 that was digitally examined in 2015. In this article we apply, examine and discuss a new virtual unfolding technique that results in a clearer image of the scroll’s 17 lines of writing. We also compare it to the earlier unfolding and discuss progress in general analytical tools. We publish the original and the new images as well as the unfolded volume data open access in order to make these available to researchers interested in optimising unfolding processes of various complexly folded materials.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2022-08-31
    Description: Balanced separators are node sets that split the graph into size bounded components. They find applications in different theoretical and practical problems. In this paper we discuss how to find a minimum set of balanced separators in node weighted graphs. Our contribution is a new and exact algorithm that solves Minimum Balanced Separators by a sequence of Hitting Set problems. The only other exact method appears to be a mixed-integer program (MIP) for the edge weighted case. We adapt this model to node weighted graphs and compare it to our approach on a set of instances, resembling transit networks. It shows that our algorithm is far superior on almost all test instances.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2022-10-07
    Description: Agent based models (ABMs) are a useful tool for modeling spatio-temporal population dynamics, where many details can be included in the model description. Their computational cost though is very high and for stochastic ABMs a lot of individual simulations are required to sample quantities of interest. Especially, large numbers of agents render the sampling infeasible. Model reduction to a metapopulation model leads to a significant gain in computational efficiency, while preserving important dynamical properties. Based on a precise mathematical description of spatio-temporal ABMs, we present two different metapopulation approaches (stochastic and piecewise deterministic) and discuss the approximation steps between the different models within this framework. Especially, we show how the stochastic metapopulation model results from a Galerkin projection of the underlying ABM onto a finite-dimensional ansatz space. Finally, we utilize our modeling framework to provide a conceptual model for the spreading of COVID-19 that can be scaled to real-world scenarios.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2022-10-28
    Description: Convolutional neural networks (CNNs) are the state-of-the-art for automated assessment of knee osteoarthritis (KOA) from medical image data. However, these methods lack interpretability, mainly focus on image texture, and cannot completely grasp the analyzed anatomies’ shapes. In this study we assess the informative value of quantitative features derived from segmentations in order to assess their potential as an alternative or extension to CNN-based approaches regarding multiple aspects of KOA A fully automated method is employed to segment six anatomical structures around the knee (femoral and tibial bones, femoral and tibial cartilages, and both menisci) in 46,996 MRI scans. Based on these segmentations, quantitative features are computed, i.e., measurements such as cartilage volume, meniscal extrusion and tibial coverage, as well as geometric features based on a statistical shape encoding of the anatomies. The feature quality is assessed by investigating their association to the Kellgren-Lawrence grade (KLG), joint space narrowing (JSN), incident KOA, and total knee replacement (TKR). Using gold standard labels from the Osteoarthritis Initiative database the balanced accuracy (BA), the area under the Receiver Operating Characteristic curve (AUC), and weighted kappa statistics are evaluated. Features based on shape encodings of femur, tibia, and menisci plus the performed measurements showed most potential as KOA biomarkers. Differentiation between healthy and severely arthritic knees yielded BAs of up to 99%, 84% were achieved for diagnosis of early KOA. Substantial agreement with weighted kappa values of 0.73, 0.73, and 0.79 were achieved for classification of the grade of medial JSN, lateral JSN, and KLG, respectively. The AUC was 0.60 and 0.75 for prediction of incident KOA and TKR within 5 years, respectively. Quantitative features from automated segmentations yield excellent results for KLG and JSN classification and show potential for incident KOA and TKR prediction. The validity of these features as KOA biomarkers should be further evaluated, especially as extensions of CNN-based approaches. To foster such developments we make all segmentations publicly available together with this publication.
    Language: English
    Type: researchdata , doc-type:ResearchData
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2022-11-03
    Description: The Periodic Event Scheduling Problem (PESP) is the central mathematical model behind the optimization of periodic timetables in public transport. We apply Benders decomposition to the incidence-based MIP formulation of PESP. The resulting formulation exhibits particularly nice features: The subproblem is a minimum cost network flow problem, and feasibility cuts are equivalent to the well-known cycle inequalities by Odijk. We integrate the Benders approach into a branch-and-cut framework, and assess the performance of this method on instances derived from the benchmarking library PESPlib.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2022-11-24
    Description: About 23% of the German energy demand is supplied by natural gas. Additionally, for about the same amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by transmissions system operators (TSOs). The number one priority of the TSOs is to ensure the security of supply. However, the TSOs have only very limited knowledge about the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany’s largest TSO, operates a high-pressure transport network of about 12,000 km length. With the introduction of peak-load gas power stations, it is of great importance to predict in- and out-flow of the network to ensure the necessary flexibility and security of supply for the German Energy Transition (“Energiewende”). In this paper, we introduce a novel hybrid forecast method applied to gas flows at the boundary nodes of a transport network. This method employs an optimized feature selection and minimization. We use a combination of a FAR, LSTM and mathematical programming to achieve robust high-quality forecasts on real-world data for different types of network nodes.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2022-11-28
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2022-11-28
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2022-11-28
    Description: We evaluated how plasma proteomic signatures in patients with suspected COVID-19 can unravel the pathophysiology, and determine kinetics and clinical outcome of the infection. We identified distinct plasma proteins linked to the presence and course of COVID-19. These plasma proteomic findings may translate to a protein fingerprint, helping to assist clinical management decisions.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2022-12-05
    Description: Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2022-12-12
    Description: Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...