Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1727-1736 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The magnitude and direction of the ultrasonic radiation forces that act on individual particles in a standing-wave field were determined using a microscope-based imaging system. The forces are calculated from measured particle velocities assuming that the drag force, given by Stokes' law, is exactly counterbalanced by the imposed ultrasonic forces. The axial primary radiation force was found to vary sinusoidally with axial position and to be proportional to the local acoustic energy density, as predicted by theory. The magnitude of the transverse primary force was determined by two independent methods to be about 100-fold weaker than the axial force. Separation concepts exploiting the transverse force for cell retention have been successful despite the great disparity in magnitude between the axial and transvers-force components. This may be explained by the reduced hydrodynamic forces on aggregated particles in transverse flow due to their alignment in the sound field.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...