Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 60 (1998), S. 156-168 
    ISSN: 0006-3592
    Keywords: fed-batch ; Candida rugosa lipase production ; control ; feeding strategy ; on-line monitoring and estimation ; lipase purification ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Simulation studies have predicted that maximum lipase activity is reached with fed-batch operation strategies. In this work, two different fed-batch operational strategies have been studied: constant substrate feeding rate and specific growth rate control. A constant substrate feeding rate strategy showed that maximum aqueous lipolytic activity (55 U/mL) was reached at low substrate feeding rates, whereas lipase tends to accumulate inside the cell at higher rates of substrate addition. In the second fed-batch strategy studied, a feedback control strategy has been developed based on the estimation of state variables (X and μ) from the measurement of indirect variables such as CER by means of mass spectrometry techniques. An on-off controller was then used to maintain the specific growth rate at the desired value by adjusting the substrate feeding rate. A constant specific growth rate strategy gave higher final levels of aqueous lipolytic activity (117 U/mL) at low specific growth rates. At higher specific growth rates the enzyme remained accumulated inside the cell, as was observed with a constant feeding fed-batch strategy. With a constant specific growth rate strategy, lipase production by Candida rugosa was enhanced 10-fold compared to a batch operation. Purification studies have demonstrated that lipolytic and esterasic specific activity ratios of Candida rugosa isoenzymes can be modified by using different operational conditions. These studies have also showed that the isoenzymes obtained in a controlled growth rate strategy are around three- to four-fold more active than those obtained in a constant feeding rate strategy. © 1998 John Wiley & Sons, Inc. Biotechnol Bioeng 60: 156-168, 1998.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...