Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 26 (1994), S. 421-436 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We have investigated the impact of surface reactions such as NH3 decomposition and radical adsorption on quartz flow reactor data for Thermal DeNOx using a model that accounts for surface chemistry as well as molecular transport. Our calculations support experimental observations that surface effects are not important for experiments carried out in low surface to volume quartz reactors. The reaction mechanism for Thermal DeNOx has been revised in order to reflect recent experimental results. Among the important changes are a smaller chain branching ratio for the NH2 + NO reaction and a shorter NNH lifetime than previously used in modeling. The revised mechanism has been tested against a range of experimental flow reactor data for Thermal DeNOx with reasonable results. The formation of N2O in Thermal DeNOx has been modelled and calculations show good agreement with experimental data. The important reactions in formation and destruction of N2O have been identified. Our calculations indicate that N2O is formed primarily from the reaction between NH and NO, even though the NH2 + NO2 reaction possibly contributes at lower temperatures. At higher temperatures N2O concentrations are limited by thermal dissociation of N2O and by reaction with radicals, primarily OH. © 1994 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...