Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 51 (1994), S. 539-553 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The availability of recent supercomputers and massively parallel computing facilities makes possible the calculation of the electronic structure of highly extended (mesoscopic) molecular networks. Disorder, which is practically always present in these systems, causes an extreme complexity of the wave function that typically shows multifractal behavior in the intermediate length scale. Multifractal analysis, however, is possible only on systems that cover several orders of length scales. Though such calculation can be carried out on model systems, it is beyond the bounds of present ab initio or semiempirical treatments. In this contribution, a shape-analysis method of the wave function is given that is applicable both for localized and multifractal one-particle states even in moderately large networks without a regular geometrical structure. No boxing of the distributions is necessary through several orders of magnitude of scaling distances. Multifractal behavior and different regularly decaying localization shape functions can be distinguished. Finite-size multifractal distributions are also discussed. The described method is intended to serve as an easily applicable and efficient tool for bridging over the gap between the wave-function analysis of systems containing macroscopic and moderately large number of particles. © 1994 John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...