Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 57 (1996), S. 361-367 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The orthogonal group function approach, as based on the Huzinaga equation, is extensively applied in reduced basis frozen-core calculations. Although the theory is developed for orthogonal electronic groups, the use of reduced basis sets prevents strict orthogonality and the formalism is complemented to take, partially, into account nonorthogonality (projection factors, projection energy). In the present article, an alternative to this approach, based on the nonorthogonal formalism, is proposed. An orbital equation is derived from the Adams-Gilbert equation and the energy is evaluated according to a recent proposal based on the power-series expansion of the overlap energy. A comparative overview of the orthogonal and nonorthogonal formalisms is presented and the results of reduced basis frozen-core calculations as obtained with the two methods are compared. It is found that the nonorthogonal formulation predicts equilibrium geometrical parameters in some cases similarly and, in other cases, slightly better than does the orthogonal one. Based on this observation and on the fact that the nonorthogonal formulation is exempt from empirical parameters (projection factors), it is concluded that the nonorthogonal formalism represents an appealing alternative in reduced basis frozen-core calculations. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...