Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5060
    Keywords: dough quality ; electrophoresis ; endosperm storage protein ; genetics ; gluten strength ; near isogenic line ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Two alleles, Glu-A1r encoding high-molecular-weight (HMW) glutenin subunits 39+40 and Glu-A1s encoding HMW glutenin subunits 41+42, were introgressed to bread wheat (Triticum aestivum L.) cv. Sicco from two accessions of T. boeoticum Boiss. ssp. thaoudar (A genome species, 2n=2x=14). Alleles at Glu-A1 in current commercial bread wheats encode zero or one subunit, and alleles at the homoeoloci Glu-B1 and Glu-D1 encode a maximum of two subunits; hence the maximum number of subunits found in commercial wheats is five, whereas the lines incorporating Glu-A1r and Glu-A1s carry six. Using near-isogenic lines, the current results demonstrated that the introduction of Glu-A1r resulted in diminished dough stickiness and improved stability during mixing compared with Glu-A1a encoding subunit 1, and a small improvement in gluten strength as shown by the SDS- sedimentation test. The introduction of Glu-A1a also resulted in a small improvement in gluten strength predicted by the SDS-sedimentation test. Thus the alleles are of potential value in breeding programmes designed to improve bread-making quality.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...