Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Chlorophyll fluorescence ; Photoinhibition ; Photoprotection ; Ulva (photosynthesis)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The relationships between photoinhibition and photoprotection in high and low-light-grown Ulva were examined by a combination of chlorophyll-fluorescence-monitoring techniques. Tissues were exposed to a computer-controlled sequence of 5-min exposures to red light, followed by 5-min darkness, with stepwise increases in photon flux. Coefficients of chlorophyll fluorescence quenching (1−qP and NPQ) were calculated following a saturating pulse of white light near the end of each 5-min light treatment. Dark-adapted chlorophyll fluorescence parameters (F0 and FV/FM) were calculated from a saturating pulse at the end of each 5-min dark period. Low-light-grown Ulva showed consistently higher 1−qP, i.e. higher reduction status of Q (high primary acceptor of photosystem II), and lower capacity for nonphotochemical quenching (NPQ) at saturating light than did high-light-grown plants. Consequently, low-light plants rapidly displayed photoinhibitory damage (increased F0) at light saturation in seawater. Removal of dissolved inorganic carbon from seawater also led to photoinhibitory damage of high-light-grown Ulva at light saturation, and addition of saturating amounts of dissolved inorganic carbon protected low-light-grown plants against photoinhibitory damage. A large part of NPQ was abolished by treatment with 3 mM dithiothreitol and the processes so inhibited were evidently photoprotective, because dithiothreitol treatment accelerated photoinhibitory damage in both low- and high-light-grown Ulva. The extent of photoinhibitory damage in Ulva was exacerbated by treatment with chloramphenicol (1 mM) without much effect on chlorophyll-quenching parameters, evidently because this inhibitor of chloroplast protein synthesis reduced the rate of repair processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...