Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 26 (2000), S. 229-235 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This paper describes the results of computational simulations of a frontal impact to the head and the predicted development of coup and contrecoup contusion (i.e., at and opposite the site of impact, respectively) within brain tissue. Three separate two-dimensional plane strain finite element models of the head, each of which incorporated the skull, the cerebrospinal fluid and the brain, were constructed. Two of these models represented the coronal plane of the head as being elliptic whilst the third model was geometrically representative of an actual human head. This third model was taken in an off-centre mid-sagittal plane in an anterior–posterior direction and all three models were used to investigate the dynamic response of the human head when subject to direct translational impact events. The physiological consequences of modelling the human brain as being elastic were established. Compressive and tensile strains were predicted at the coup and contrecoup sites for a simulated frontal impact event by means of a simple elastic analysis. These distributions of most severe strain correspond directly to the occurrence of coup and contrecoup contusion such as are witnessed in clinical studies which arise under the action of translational acceleration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...