Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 1766-1768 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanocrystalline silicon aggregates imbedded in a predominantly amorphous silicon layer have been observed in anodically etched p-Si(100) by using valence band x-ray photoelectron spectroscopy and lattice imaged high-resolution transmission electron microscopy (XTEM). XTEM has identified the as-prepared porous silicon to be a mixed phase of amorphous and nanocrystalline silicon, with the nanocrystalline aggregates being randomly dispersed throughout the full thickness of a 1 μm thick amorphous layer and exhibiting a size distribution from 2 to 5 nm in diameter. The abundance of the nanocrystalline aggregates seems to decrease as the anodic etching proceeds and as the sample is irradiated by x rays at room temperature in ultrahigh vacuum. Valence band photoelectron measurements show evidence for a crystalline-to-amorphous phase transition induced by x radiation which may, in part, be activated by photoelectron stimulated hydrogen desorption. The x-ray irradiated samples also exhibit a significant reduction in photoluminescence yield, possibly caused by a reduction in the density of nanocrystallites. The observed mixed phase porous silicon and the metastability of the nanocrystallites help to explain apparent contradictory descriptions of the nature of porous silicon. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...