Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 54 (1989), S. 1631-1633 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The deposition of SnO2 films has been demonstrated using an ArF (193 nm) excimer laser to drive the photochemical reactions of mixed SnCl4 and N2 O vapors. Without any annealing, films 100 nm thick grown on room-temperature substrates have resistivities as low as 0.04 Ω cm. The optical band gap of 3.20 eV and transmission cutoff wavelength of 330 nm compare favorably with the best films obtained using alternate higher temperature techniques. Subsequent annealing does not increase the film's conductivity. Selective area growth of 10-μm-wide lines has been performed using proximity printing. The maximum temperature excursion during the laser pulse is estimated to be 300–400 °C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Pulses of 193 nm radiation from an ArF laser with energies exceeding 0.5 J/cm2 have been shown to modify 40–60 nm thick layers of {100} and {110} oriented diamond surfaces. These layers exhibit highly anisotropic electrical and optical properties which have principal in-plane axes along the 〈110〉 directions. The minimum resistance is (4–10)×10−4 Ω cm, and minimum in the optical transmittance and maximum in the reflectance occur when the electric field vector of the incident polarized light is aligned along the low resistance direction. Transmission electron microscopy indicates that the modified layer primarily consists of unidentified graphite-like carbon phases embedded in diamond. The first-order electron diffraction spots correspond to lattice spacings of 0.123, 0.305, and 0.334 nm. The modified layer is stable at 1800 °C, forms ohmic contacts to type IIb diamond, and supports epitaxial diamond growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 67 (1995), S. 1766-1768 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nanocrystalline silicon aggregates imbedded in a predominantly amorphous silicon layer have been observed in anodically etched p-Si(100) by using valence band x-ray photoelectron spectroscopy and lattice imaged high-resolution transmission electron microscopy (XTEM). XTEM has identified the as-prepared porous silicon to be a mixed phase of amorphous and nanocrystalline silicon, with the nanocrystalline aggregates being randomly dispersed throughout the full thickness of a 1 μm thick amorphous layer and exhibiting a size distribution from 2 to 5 nm in diameter. The abundance of the nanocrystalline aggregates seems to decrease as the anodic etching proceeds and as the sample is irradiated by x rays at room temperature in ultrahigh vacuum. Valence band photoelectron measurements show evidence for a crystalline-to-amorphous phase transition induced by x radiation which may, in part, be activated by photoelectron stimulated hydrogen desorption. The x-ray irradiated samples also exhibit a significant reduction in photoluminescence yield, possibly caused by a reduction in the density of nanocrystallites. The observed mixed phase porous silicon and the metastability of the nanocrystallites help to explain apparent contradictory descriptions of the nature of porous silicon. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 32 (1992), S. 1595-1599 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Irradiation of certain organosilicon polymers with a 193-nm excimer laser forms a latent image that contains increased amounts of oxygen. Patterning is achieved by dry development in an HBr plasma, where the oxidized polymer etches more slowly than the unexposed areas. With these polymers as the top layer in a bilayer resist scheme, 0.2 μm resolution has been demonsrated and resist sensitivities less than 50 mJ/cm2 have been achieved. Three classes of organosilicon layers have been investigated: polysilynes; polysilanes, in particular poly(phenylmethyl) silane; and a plasma-deposited polymer derived from tetramethylsilane (PPTMS). The PPTMS, when used with plasma-deposited planarizing layers, opens the possibility of an all-dry, cluster-tool-compatible lithographic cycle.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...