Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 88 (2000), S. 1299-1306 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In this paper an extensive characterization of the electrical activation of ultra-low energy implanted boron in silicon is reported. The Spreading Resistance Profiling technique has been used, in a suitable configuration, for measuring doped layers shallower than 100 nm, in order to extract the carrier concentration profiles. The dependence on the implant energy, dose, and annealing temperature allowed us to gain more insight into the mechanisms responsible for the electrical activation at implant energies below 1 keV. By measuring the electrical activation as a function of time for several annealing temperatures, the thermal activation energy for the electrical activation of the dopant was achieved. It slightly depends on the implant dose and it is in the range of 2–3 eV. In particular, for an implant dose of 1×1014/cm2 it is 2.0 eV, close therefore to the 1.7 eV activation energy found [Napolitani et al., Appl. Phys. Lett. 75, 1869 (1999)] for the enhanced diffusion of ultra-low energy implanted boron. The best conditions to maximize electrical activation, while minimizing diffusion, are identified and junction depths of ∼50 nm with sheet resistance below 500 Ω reported. These data are reported and their implication for the fabrication of future generation devices is discussed. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...