Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 5365-5365 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Nonlinear waves in the form of solitons in magnetic films are attracting attention because of the interesting possibility of making novel spatial, and temporal, soliton devices that will operate in the technologically important microwave (GHz) frequency window. Some fascinating pioneering experimental work has been performed in this area and there is now every possibility that manipulation of solitonlike microwave pulses will be the basis of an entirely new range of devices. Both theory and experiment show that solitons are extremely robust and behave rather like particles. Magnetic films look set to become as successful as optical fibers in supporting bright envelope solitons; yet soliton behavior can often seem hard to comprehend. While they are subtle in their behavior they can be understood from many points of view that are physically, or mathematically, based. This presentation will explain what bright microwave envelope solitons are, drawing upon as much physical insight and analogy as possible. The necessary and sufficient conditions for soliton existence will be carefully set out, especially with respect to their relationship to the input conditions of a device. A substantial number of numerical examples will be used and the prospects for major expansion in the experimental area will be assessed. In the latter part of the presentation some important applications for solitons will be addressed. These will include the analysis of a switching device but logic devices, and various forms of pump–probe arrangements, will also be retrieved. Finally, the optimistic view that solitons in magnetic materials are now realistic tools will be expressed and the opportunities provided by dark and higher-dimensional solitons will be discussed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...