Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 74 (1993), S. 1707-1715 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The results of Monte Carlo simulation of phase separation during binary film coevaporation are presented for a range of deposition conditions. The model employed assumes that phase separation occurs through surface interdiffusion during deposition, while the bulk of the film remains frozen. Simulations were performed on A-B alloy films having compositions of 10 and 50 vol % solute. For both film compositions, the lateral scale of the domains at the film surface evolves to a steady-state size during deposition. A power-law dependence of the steady-state domain size on the inverse deposition rate is obtained. Simulation microstructures at 50 vol % compare favorably with those obtained in a previous experimental study of phase separation during coevaporation of Al-Ge films of the same composition. Results of simulations performed at 10 vol % are compared with the predictions of a theoretical model based on the above assumptions. The power-law exponent obtained from simulations at 10 vol % is different than that predicted by the theoretical model. The reasons for this difference are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...