Library

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-05
    Description: This paper describes several experiments to explore the options for solving a class of mixed integer nonlinear programming problems that stem from a real-world mine production planning project. The only type of nonlinear constraints in these problems are bilinear equalities involving continuous variables, which enforce the ratios between elements in mixed material streams. A branch-and-bound algorithm to handle the integer variables has been tried in another project. However, this branch-and-bound algorithm is not effective for handling the nonlinear constraints. Therefore state-of-the-art nonlinear solvers are utilized to solve the resulting nonlinear subproblems in this work. The experiments were carried out using the NEOS server for optimization. After finding that current nonlinear programming solvers seem to lack suitable preprocessing capabilities, we preprocess the instances beforehand and use an heuristic approach to solve the nonlinear subproblems. In the appendix, we explain how to add a polynomial constraint handler that uses IPOPT as embedded nonlinear programming solver for the constraint programming framework SCIP. This is one of the crucial steps for implementing our algorithm in SCIP. We briefly described our approach and give an idea of the work involved.
    Keywords: ddc:510
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...