Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Material
Person/Organisation
Keywords
Language
  • 1
    Book
    Book
    Aachen :Cuvillier,
    Title: Routing and capacity optimization for IP networks /
    Author: Bley, Andreas
    Publisher: Aachen :Cuvillier,
    Year of publication: 2007
    Pages: 280 S.
    Dissertation note: Zugl.: Techn. Univ., Berlin, Diss., 2007
    ISBN: 978-3-86727-281-0
    Type of Medium: Book
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-11
    Description: We investigate the problem of designing survivable broadband virtual private networks that employ the Open Shortest Path First (OSPF) routing protocol to route the packages. The capacities available for the links of the network are a minimal capacity plus multiples of a unit capacity. Given the directed communication demands between all pairs of nodes, we wish to select the capacities in a such way, that even in case of a single node or a single link failure a specified percentage of each demand can be satisfied and the costs for these capacities are minimal. We present a mixed--integer linear programming formulation of this problem and several heuristics for its solution. Furthermore, we report on computational results with real-world data.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: Let $G=(V,E)$ be a simple graph and $s$ and $t$ be two distinct vertices of $G$. A path in $G$ is called $\ell$-bounded for some $\ell\in\mathbb{N}$, if it does not contain more than $\ell$ edges. We study the computational complexity of approximating the optimum value for two optimization problems of finding sets of vertex-disjoint $\ell$-bounded $s,t$-paths in $G$. First, we show that computing the maximum number of vertex-disjoint $\ell$-bounded $s,t$-paths is $\mathcal{AP\kern-1pt X}$--complete for any fixed length bound $\ell\geq 5$. Second, for a given number $k\in\mathbb{N}$, $1\leq k \leq |V|-1$, and non-negative weights on the edges of $G$, the problem of finding $k$ vertex-disjoint $\ell$-bounded $s,t$-paths with minimal total weight is proven to be $\mathcal{NPO}$--complete for any length bound $\ell\geq 5$. Furthermore, we show that, even if $G$ is complete, it is $\mathcal{NP}$--complete to approximate the optimal solution value of this problem within a factor of $2^{\langle\phi\rangle^\epsilon}$ for any constant $0〈\epsilon〈1$, where $\langle\phi\rangle$ denotes the encoding size of the given problem instance $\phi$. We prove that these results are tight in the sense that for lengths $\ell\leq 4$ both problems are polynomially solvable, assuming that the weights satisfy a generalized triangle inequality in the weighted problem. All results presented also hold for directed and non-simple graphs. For the analogous problems where the path length restriction is replaced by the condition that all paths must have length equal to $\ell$ or where vertex-disjointness is replaced by edge-disjointness we obtain similar results.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-11
    Description: We consider the problem of designing a network that employs a non-bifurcated shortest path routing protocol. The network's nodes and the set of potential links are given together with a set of forecasted end-to-end traffic demands. All relevant hardware components installable at links or nodes are considered. The goal is to simultaneously choose the network's topology, to decide which hardware components to install on which links and nodes, and to find appropriate routing weights such that the overall network cost is minimized. In this paper, we present a mathematical optimization model for this problem and an algorithmic solution approach based on a Lagrangian relaxation. Computational results achieved with this approach for several real-world network planning problems are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-08-05
    Description: Most data networks nowadays use shortest path protocols to route the traffic. Given administrative routing lengths for the links of the network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. In this paper, we present an integer programming algorithm for the minimum congestion unsplittable shortest path routing problem, which arises in the operational planning of such networks. Given a capacitated directed graph and a set of communication demands, the goal is to find routing lengths that define a unique shortest path for each demand and minimize the maximum congestion over all links in the resulting routing. We illustrate the general decomposition approach our algorithm is based on, present the integer and linear programming models used to solve the master and the client problem, and discuss the most important implementational aspects. Finally, we report computational results for various benchmark problems, which demonstrate the efficiency of our algorithm.
    Keywords: ddc:510
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: Nowadays most data networks use shortest path protocols such as OSPF or IS-IS to route traffic. Given administrative routing lengths for the links of a network, all data packets are sent along shortest paths with respect to these lengths from their source to their destination. One of the most fundamental problems in planning shortest path networks is to decide whether a given set of routing paths forms a valid routing and, if this is not the case, to find a small subset of the given paths that cannot be shortest paths simultaneously for any routing lengths. In this paper we show that it is NP-hard to approximate the size of the smallest shortest path conflict by a factor less than 7/6.
    Keywords: ddc:510
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-11
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...