Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Opus Repository ZIB  (20)
  • 2010-2014  (13)
  • 2005-2009  (7)
  • 1990-1994
  • 2013  (13)
  • 2005  (7)
Source
  • Opus Repository ZIB  (20)
Years
  • 2010-2014  (13)
  • 2005-2009  (7)
  • 1990-1994
Year
Keywords
Language
  • 1
    Publication Date: 2020-08-05
    Description: We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-05
    Description: We propose a novel extended formulation for the line planning problem in public transport. It is based on a new concept of frequency configurations that account for all possible options to provide a required transportation capacity on an infrastructure edge. We show that this model yields a strong LP relaxation. It implies, in particular, general classes of facet defining inequalities for the standard model.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-15
    Description: The line planning problem is one of the fundamental problems in strategic planning of public and rail transport. It consists in finding lines and corresponding frequencies in a transport network such that a given travel demand can be satisfied. There are (at least) two objectives. The transport company wishes to minimize operating costs, the passengers want to minimize travel times. We propose a n ew multi-commodity flow model for line planning. Its main features, in comparison to existing models, are that the passenger paths can be freely routed and that the lines are generated dynamically. We discuss properties of this model and investigate its complexity. Results with data for the city of Potsdam, Germany, are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Format: application/postscript
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-12-15
    Description: In this paper we introduce the fare planning problem for public transport which consists in designing a system of fares maximizing revenue. We propose a new simple general model for this problem. It i s based on a demand function and constraints for the different fares. The constraints define the structure of the fare system, e.g., distance dependent fares or zone fares. We discuss a simple example with a quadratic demand function and distance dependent fares. Then we introduce a more realistic discrete choice model in which passengers choose between different alternatives depending on the numb er of trips per month. We demonstrate the examples by computational experiments.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-15
    Description: Can OR methods help the public transport industry to break even? The article gives evidence that there exist significant potentials in this direction, which can be harnessed by a combination of modern mathematical methods and local planning knowledge. Many of the planning steps in public transport are classical combinatorial problems, which can be solved in unprecedented size and quality due the rapid progress in large-scale optimization. Three examples on vehicle scheduling, duty scheduling, and integrated vehicle and duty scheduling illustrate the level that has been reached and the improvements that can be achieved today. Extensions of such methods to further questions of strategic, online, and market-oriented planning are currently investigated. In this way, OR can make a significant contribution to answer the basic but extremely difficult question ``What is a good public transport network?.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-09
    Description: The airline crew scheduling problem deals with the construction of crew rotations in order to cover the flights of a given schedule at minimum cost. The problem involves complex rules for the legality and costs of individual pairings and base constraints for the availability of crews at home bases. A typical instance considers a planning horizon of one month and several thousand flights. We propose a column generation approach for solving airline crew scheduling problems that is based on a set partitioning model. We discuss algorithmic aspects such as the use of bundle techniques for the fast, approximate solution of linear programs, a pairing generator that combines Lagrangean shortest path and callback techniques, and a novel rapid branching'' IP heuristic. Computational results for a number of industrial instances are reported. Our approach has been implemented within the commercial crew scheduling system NetLine/Crew of Lufthansa Systems Berlin GmbH.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/postscript
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: Usually complete linear descriptions of polytopes consist of an enormous number of facet-defining inequalities already for very small problem sizes. In this paper, we describe a method for dividing the inequalities into equivalence classes without resorting to a normal form. Within each class, facets are related by certain symmetries and it is sufficient to list one representative of each class to give a complete picture of the structural properties of a polytope. We propose an algorithm for the classification and illustrate its efficiency on a broad range of combinatorial optimization problems including the Traveling Salesman and the Linear Ordering Problem.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-08-05
    Description: We extend the primal-dual approximation technique of Goemans and Williamson to the Steiner connectivity problem, a kind of Steiner tree problem in hypergraphs. This yields a (k+1)-approximation algorithm for the case that k is the minimum of the maximal number of nodes in a hyperedge minus 1 and the maximal number of terminal nodes in a hyperedge. These results require the proof of a degree property for terminal nodes in hypergraphs which generalizes the well-known graph property that the average degree of terminal nodes in Steiner trees is at most 2.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-08-05
    Description: Steiner trees are constructed to connect a set of terminal nodes in a graph. This basic version of the Steiner tree problem is idealized, but it can effectively guide the search for successful approaches to many relevant variants, from both a theoretical and a computational point of view. This article illustrates the theoretical and algorithmic progress on Steiner tree type problems on two examples, the Steiner connectivity and the Steiner tree packing problem.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: The Rolling Stock Rotation Problem is to schedule rail vehicles in order to cover timetabled trips by a cost optimal set of vehicle rotations. The problem integrates several facets of railway optimization, i.e., vehicle composition, maintenance constraints, and regularity aspects. In industrial applications existing schedules often have to be re-optimized to integrate timetable changes or construction sites. We present an integrated modeling and algorithmic approach for this task as well as computational results for industrial problem instances of DB Fernverkehr AG.
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...