Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2020-2023  (6)
  • 1995-1999  (6)
  • English  (12)
Source
Years
Year
Keywords
Language
  • 1
    Publication Date: 2019-01-29
    Description: In the clinical cancer therapy of regional hyperthermia nonlinear perfusion effects inside and outside the tumor seem to play a not negligible role. A stationary model of such effects leads to a nonlinear Helmholtz term within an elliptic boundary value problem. The present paper reports about the application of a recently designed adaptive multilevel FEM to this problem. For several 3D virtual patients, nonlinear versus linear model is studied. Moreover, the numerical efficiency of the new algorithm is compared with a former application of an adaptive FEM to the corresponding instationary model PDE.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-03-20
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-29
    Description: The finite element setting for nonlinear elliptic PDEs directly leads to the minimization of convex functionals. Uniform ellipticity of the underlying PDE shows up as strict convexity of the arising nonlinear functional. The paper analyzes computational variants of Newton's method for convex optimization in an affine conjugate setting, which reflects the appropriate affine transformation behavior for this class of problems. First, an affine conjugate Newton--Mysovskikh type theorem on the local quadratic convergence of the exact Newton method in Hilbert spaces is given. It can be easily extended to inexact Newton methods, where the inner iteration is only approximately solved. For fixed finite dimension, a special implementation of a Newton--PCG algorithm is worked out. In this case, the suggested monitor for the inner iteration guarantees quadratic convergence of the outer iteration. In infinite dimensional problems, the PCG method may be just formally replaced by any Galerkin method such as FEM for linear elliptic problems. Instead of the algebraic inner iteration errors we now have to control the FE discretization errors, which is a standard task performed within any adaptive multilevel method. A careful study of the information gain per computational effort leads to the result that the quadratic convergence mode of the Newton--Galerkin algorithm is the best mode for the fixed dimensional case, whereas for an adaptive variable dimensional code a special linear convergence mode of the algorithm is definitely preferable. The theoretical results are then illustrated by numerical experiments with a {\sf NEWTON--KASKADE} algorithm.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-07
    Description: Kaskade 7 is a finite element toolbox for the solution of stationary or transient systems of partial differential equations, aimed at supporting application-oriented research in numerical analysis and scientific computing. The library is written in C++ and is based on the \textsc{Dune} interface. The code is independent of spatial dimension and works with different grid managers. An important feature is the mix-and-match approach to discretizing systems of PDEs with different ansatz and test spaces for all variables. We describe the mathematical concepts behind the library as well as its structure, illustrating its use at several examples on the way.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-11-16
    Description: Multigrid methods for two-body contact problems are mostly based on special mortar discretizations, nonlinear Gauss-Seidel solvers, and solution-adapted coarse grid spaces. Their high computational efficiency comes at the cost of a complex implementation and a nonsymmetric master-slave discretization of the nonpenetration condition. Here we investigate an alternative symmetric and overconstrained segment-to-segment contact formulation that allows for a simple implementation based on standard multigrid and a symmetric treatment of contact boundaries, but leads to nonunique multipliers. For the solution of the arising quadratic programs, we propose augmented Lagrangian multigrid with overlapping block Gauss-Seidel smoothers. Approximation and convergence properties are studied numerically at standard test problems.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-01-29
    Description: The paper deals with the multilevel solution of {\em elliptic} partial differential equations (PDEs) in a {\em finite element} setting: {\em uniform ellipticity} of the PDE then goes with {\em strict monotonicity} of the derivative of a nonlinear convex functional. A {\em Newton multigrid method} is advocated, wherein {\em linear residuals} are evaluated within the multigrid method for the computation of the Newton corrections. The globalization is performed by some {\em damping} of the ordinary Newton corrections. The convergence results and the algorithm may be regarded as an extension of those for local Newton methods presented recently by the authors. An {\em affine conjugate} global convergence theory is given, which covers both the {\em exact} Newton method (neglecting the occurrence of approximation errors) and {\em inexact} Newton--Galerkin methods addressing the crucial issue of accuracy matching between discretization and iteration errors. The obtained theoretical results are directly applied for the construction of adaptive algorithms. Finally, illustrative numerical experiments with a~{\sf NEWTON--KASKADE} code are documented.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Publication Date: 2019-01-29
    Description: The C++ standard template library has many useful containers for data. The standard library includes two adpators, queue, and stack. The authors have extended this model along the lines of relational database semantics. Sometimes the analogy is striking, and we will point it out occasionally. An adaptor allows the standard algorithms to be used on a subset or modification of the data without having to copy the data elements into a new container. The authors provide many useful adaptors which can be used together to produce interesting views of data in a container.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-29
    Description: The electric conductivity of cardiac tissue determines excitation propagation and is important for quantifying ischemia and scar tissue and for building personalized models. Estimating conductivity distributions from endocardial mapping data is a challenging inverse problem due to the computational complexity of the monodomain equation, which describes the cardiac excitation. For computing a maximum posterior estimate, we investigate different optimization approaches based on adjoint gradient computation: steepest descent, limited memory BFGS, and recursive multilevel trust region methods, which are using mesh hierarchies or heterogeneous model hierarchies. We compare overall performance, asymptotic convergence rate, and pre-asymptotic progress on selected examples in order to assess the benefit of our multifidelity acceleration.
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-12-05
    Description: Solving PDEs on unstructured grids is a cornerstone of engineering and scientific computing. Heterogeneous parallel platforms, including CPUs, GPUs, and FPGAs, enable energy-efficient and computationally demanding simulations. In this article, we introduce the HPM C++-embedded DSL that bridges the abstraction gap between the mathematical formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different programming models on the other hand. Thus, the HPM DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HPM DSL, and demonstrate its usage with three examples. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters, is presented. A code generator and a matching back end allow the acceleration of HPM code with GPUs. Finally, the achievable performance and scalability are demonstrated for different example problems.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-12-12
    Description: Solving partial differential equations on unstructured grids is a cornerstone of engineering and scientific computing. Nowadays, heterogeneous parallel platforms with CPUs, GPUs, and FPGAs enable energy-efficient and computationally demanding simulations. We developed the HighPerMeshes C++-embedded Domain-Specific Language (DSL) for bridging the abstraction gap between the mathematical and algorithmic formulation of mesh-based algorithms for PDE problems on the one hand and an increasing number of heterogeneous platforms with their different parallel programming and runtime models on the other hand. Thus, the HighPerMeshes DSL aims at higher productivity in the code development process for multiple target platforms. We introduce the concepts as well as the basic structure of the HighPer-Meshes DSL, and demonstrate its usage with three examples, a Poisson and monodomain problem, respectively, solved by the continuous finite element method, and the discontinuous Galerkin method for Maxwell’s equation. The mapping of the abstract algorithmic description onto parallel hardware, including distributed memory compute clusters is presented. Finally, the achievable performance and scalability are demonstrated for a typical example problem on a multi-core CPU cluster.
    Language: English
    Type: article , doc-type:article
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...