Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2000-2004
  • 1990-1994  (3)
  • 1994  (2)
  • 1992  (1)
Years
  • 2000-2004
  • 1990-1994  (3)
Year
Keywords
Language
  • 1
    Publication Date: 2014-02-26
    Description: Large scale combustion simulations show the need for adaptive methods. First, to save computation time and mainly to resolve local and instationary phenomena. In contrast to the widespread method of lines, we look at the reaction- diffusion equations as an abstract Cauchy problem in an appropriate Hilbert space. This means, we first discretize in time, assuming the space problems solved up to a prescribed tolerance. So, we are able to control the space and time error separately in an adaptive approach. The time discretization is done by several adaptive Runge-Kutta methods whereas for the space discretization a finite element method is used. The different behaviour of the proposed approaches are demonstrated on many fundamental examples from ecology, flame propagation, electrodynamics and combustion theory. {\bf Keywords:} initial boundary value problem, Rothe- method, adaptive Runge-Kutta method, finite elements, mesh refinement. {\bf AMS CLASSIFICATION:} 65J15, 65M30, 65M50.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: We present an adaptive Rothe method for two--dimensional problems combining an embedded Runge--Kutta scheme in time and a multilevel finite element discretization in space. The spatial discretization error is controlled by a posteriori error estimates based on interpolation techniques. A computational example for a thermodiffusive flame propagation model illustrates the high accuracy that is possible with the proposed method.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-26
    Description: Large chemical computations show the need for full adaptivity supporting the development of robust and highly efficient programs. For solutions possessing sharp moving spatial transitions, as travelling wavefronts or emerging boundary and internal layers, an automatic adjustment of both the space and the time stepsize is generally accepted to be more successful in efficient resolving critical regions of high spatial and temporal activity. In contrast to the widespread discretization sequence first space then time the reversed sequence first time then space is employed. Full adaptivity of the proposed algorithm is realized by combining embedded time discretization and multilevel finite element space discretization. In this paper the algorithm is described for one--dimensional problems. The numerical results show the significantly new perspectives opened by this approach.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...