Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (9)
  • 1996  (9)
Material
Years
  • 1995-1999  (9)
Year
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3043-3054 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The threshold for stochastic transport of high energy trapped particles in a tokamak due to toroidal field ripple is calculated by explicit construction of primary resonances, and a numerical examination of the route to chaos. Critical field ripple amplitude is determined for loss. The expression is given in magnetic coordinates and makes no assumptions regarding shape or up-down symmetry. An algorithm is developed including the effects of prompt axisymmetic orbit loss, ripple trapping, convective banana flow, and stochastic ripple loss, which gives accurate ripple loss predictions for representative Tokamak Fusion Test Reactor [R. Hawryluk, Plasma Phys. Controlled Fusion 33, 1509 (1991)] and International Thermonuclear Experimental Reactor [K. Tomabechi, Proceedings of the 12th International Conference on Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1989), Vol. 3, p. 214] equilibria. The algorithm is extended to include the effects of collisions and drag, allowing rapid estimation of alpha particle loss in tokamaks. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: High-resolution electron cyclotron emission (ECE) image reconstruction has been used to observe (m,n)=(2,1) and (3, 2) island structures on Tokamak Fusion Test Reactor [Plasma Phys. Controlled. Fusion 33, 1509 (1991)], where m and n are the poloidal and the toroidal mode number, respectively. The observed island structure is compared with other diagnostics, such as soft x-ray tomography and magnetic measurements. A cold elliptic island is observed after lithium pellet injection. Evidence for the enhancement of the heat transfer due to the island is observed. A relaxation phenomenon due to the m=2 mode is newly observed in Ohmic plasmas. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4583-4593 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The TRANSP code [R. V. Budny et al., Nucl. Fusion 35, 1497 (1995)] is used to construct comprehensive, self-consistent models for plasmas within the separatrix surface in the International Thermonuclear Experimental Reactor (ITER) [Technical Basis for the ITER Interim Design Report, Cost Review and Safety Analysis (International Atomic Energy Agency, Vienna, 1996)]. Steady state profiles of two plasmas from the ITER "Interim Design'' database are used. Effects of 1 MeV neutral beam injection, sawteeth mixing, toroidal field ripple, and helium ash transport are included. Results are given for the fusion rate profiles, and parameters describing effects such as the alpha particle heating of electrons and thermal ions, and the thermalization rates. The modeling indicates that the deposition of the neutral beam ions will peak in the plasma center, and the average beam ion energy will be half the injected energy. Sawtooth mixing will broaden the fast alpha profile. The toroidal ripple loss rate of alpha energy will be 3% before sawtooth crashes and will increase by a factor of 3 immediately following sawtooth crashes. Various assumptions for the thermal He transport and the He recycling coefficient at the separatrix Rrec are used. If the ratio of helium and energy confinement times, τ*He/τE is less than 15, the steady state fusion power is predicted to be 1.5 GW or greater. The values of the transport coefficients required for this fusion power depend on Rrec. If this is larger than about 0.5, and if the inward pinch is small the required He diffusivity must be much larger than that measured in tokamaks. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of isotope on confinement in high-recycling, L-mode plasmas is studied on the Tokamak Fusion Test Reactor (TFTR) [see D. M. Meade, J. Fusion Energy 7, 107 (1988)] by comparing hydrogen and deuterium plasmas with the same magnetic field and similar electron densities and heating power, with both Ohmic and deuterium-neutral-beam heating. Following a long operational period in deuterium, nominally hydrogen plasmas were created through hydrogen glow discharge and hydrogen gas puffing in Ohmic plasmas, which saturated the exposed limiter surface with hydrogen and raised the H/(H+D) ratio from 10±3% to 65±5%. Ohmic deuterium discharges obtained higher stored energy and lower loop voltage than hydrogen discharges with similar limiter conditions. Neutral-beam power scans were conducted in L-mode plasmas at minor radii of 50 and 80 cm, with plasma currents of 0.7 and 1.4 MA. To minimize transport differences from the beam deposition profile and beam heating, deuterium neutral beams were used to heat the plasmas of both isotopes. Total stored energy increased approximately 20% from nominally hydrogen plasmas to deuterium plasmas during auxiliary heating. Of this increase about half can be attributed to purely classical differences in the energy content of unthermalized beam ions. Kinetic measurements indicate a consistent but small increase in central electron temperature and total stored electron energy in deuterium relative to hydrogen plasmas, but no change in total ion stored energy. No significant differences in particle transport, momentum transport, and sawtooth behavior are observed. Overall, only a small improvement (∼10%) in global energy confinement time of the thermal plasma is seen between operation in hydrogen and deuterium. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 1348-1355 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The conjecture that the safety factor profile, q(r), controls the improvement in tokamak plasmas from poor confinement in the Low- (L-) mode regime to improved confinement in the supershot regime has been tested in two experiments on the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Nucl. Fusion Res. 1, 51 (1987)]. First, helium was puffed into the beam-heated phase of a supershot discharge, which induced a degradation from supershot to L-mode confinement in about 100 ms, far less than the current relaxation time. The q and shear profiles measured by a motional Stark effect polarimeter showed little change during the confinement degradation. Second, rapid current ramps in supershot plasmas altered the q profile, but were observed not to change significantly the energy confinement. Thus, enhanced confinement in supershot plasmas is not due to a particular q profile, which has enhanced stability or transport properties. The discharges making a continuous transition between supershot and L-mode confinement were also used to test the critical-electron-temperature-gradient transport model. It was found that this model could not reproduce the large changes in electron and ion temperature caused by the change in confinement. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3037-3042 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Calculations of collisional stochastic ripple loss of alpha particles from the new 20 toroidal field (TF) coil International Thermonuclear Experimental Reactor (ITER) [Plasma Physics and Controlled Nuclear Fusion Research (International Atomic Energy Agency, Vienna, 1991), Vol. 3, p. 239] predict small alpha ripple losses, less than 0.4%, close to the loss calculated for the full current operation of the earlier 24 TF coil design. An analytic fit is obtained to the ITER ripple data field demonstrating the nonlinear height dependence of the ripple minimum for D-shaped ripple contours. In contrast to alpha loss simulations for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. 21, 1324 (1992)], a simple Goldston, White, and Boozer stochastic loss criterion [Phys. Rev. Lett. 47, 647 (1981)] ripple loss model is found to require an increased renormalization of the stochastic threshold δs/δGWB(approximately-greater-than)1. Effects of collisions, sawtooth broadening, and reversal of the grad-B drift direction are included in the particle following simulations. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Because alpha particle losses can have a significant influence on tokamak reactor viability, the loss of deuterium–tritium alpha particles from the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] has been measured under a wide range of conditions. In TFTR, first orbit loss and stochastic toroidal field ripple diffusion are always present. Other losses can arise due to magnetohydrodynamic instabilities or due to waves in the ion cyclotron range of frequencies. No alpha particle losses have yet been seen due to collective instabilities driven by alphas. Ion Bernstein waves can drive large losses of fast ions from TFTR, and details of those losses support one element of the alpha energy channeling scenario. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 3379-3385 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Stability criterion for neoclassical tearing modes is obtained from the drift kinetic equation. A finite amplitude of a magnetic island is required for mode excitation. The threshold is determined by the ratio of the transversal and the parallel transport near the island when the flattening of the pressure profile eliminates the bootstrap current. A number of supershots from the database of the Tokamak Fusion Test Reactor (TFTR) [D. J. Grove and D. M. Meade, Nucl. Fusion 25, 1167 (1985)] are compared with the theory. In cases where the modes were observed in experiment the stability criterion was violated. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 3 (1996), S. 4084-4094 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Monte Carlo neutral transport simulations of hydrogen velocities in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] are compared with experiment using the Doppler-broadened Balmer-α spectral line profile. Good agreement is obtained under a range of conditions, validating the treatment of charge exchange, molecular dissociation, surface reflection, and sputtering in the neutral gas code DEGAS [D. Heifetz et al., J. Comput. Phys. 46, 309 (1982)]. A residual deficiency of 10–100 eV neutrals in most of the simulations indicates that further study of the energetics of H+2 dissociation for electron energies in excess of 100 eV is needed. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...