Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effect of isotope on confinement in high-recycling, L-mode plasmas is studied on the Tokamak Fusion Test Reactor (TFTR) [see D. M. Meade, J. Fusion Energy 7, 107 (1988)] by comparing hydrogen and deuterium plasmas with the same magnetic field and similar electron densities and heating power, with both Ohmic and deuterium-neutral-beam heating. Following a long operational period in deuterium, nominally hydrogen plasmas were created through hydrogen glow discharge and hydrogen gas puffing in Ohmic plasmas, which saturated the exposed limiter surface with hydrogen and raised the H/(H+D) ratio from 10±3% to 65±5%. Ohmic deuterium discharges obtained higher stored energy and lower loop voltage than hydrogen discharges with similar limiter conditions. Neutral-beam power scans were conducted in L-mode plasmas at minor radii of 50 and 80 cm, with plasma currents of 0.7 and 1.4 MA. To minimize transport differences from the beam deposition profile and beam heating, deuterium neutral beams were used to heat the plasmas of both isotopes. Total stored energy increased approximately 20% from nominally hydrogen plasmas to deuterium plasmas during auxiliary heating. Of this increase about half can be attributed to purely classical differences in the energy content of unthermalized beam ions. Kinetic measurements indicate a consistent but small increase in central electron temperature and total stored electron energy in deuterium relative to hydrogen plasmas, but no change in total ion stored energy. No significant differences in particle transport, momentum transport, and sawtooth behavior are observed. Overall, only a small improvement (∼10%) in global energy confinement time of the thermal plasma is seen between operation in hydrogen and deuterium. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: In the Tokamak Fusion Test Reactor (TFTR) [Plasma Phys. Controlled Fusion 26, 11 (1984)], the highest neutron source strength Sn and D–D fusion power gain QDD are realized in the neutral-beam-fueled and heated "supershot'' regime that occurs after extensive wall conditioning to minimize recycling. For the best supershots, Sn increases approximately as P1.8b. The highest-Q shots are characterized by high Te (up to 12 keV), Ti (up to 34 keV), and stored energy (up to 4.7 MJ), highly peaked density profiles, broad Te profiles, and lower Zeff. Replacement of critical areas of the graphite limiter tiles with carbon-fiber composite tiles and improved alignment with the plasma have mitigated the "carbon bloom.'' Wall conditioning by lithium pellet injection prior to the beam pulse reduces carbon influx and particle recycling. Empirically, QDD increases with decreasing pre-injection carbon radiation, and increases strongly with density peakedness [ne(0)/〈ne〉] during the beam pulse. To date, the best fusion results are Sn=5×1016 n/sec, QDD=1.85×10−3, and neutron yield=4.0×1016 n/pulse, obtained at Ip=1.6–1.9 MA and beam energy Eb=95–103 keV, with nearly balanced co- and counter-injected beam power. Computer simulations of supershot plasmas show that typically 50%–60% of Sn arises from beam–target reactions, with the remainder divided between beam–beam and thermonuclear reactions, the thermonuclear fraction increasing with Pb. The simulations predict that QDT=0.3–0.4 would be obtained for the best present plasma conditions, if half the deuterium neutral beams were to be replaced by tritium beams. Somewhat higher values are calculated if D beams are injected into a predominantly tritium target plasma. The projected central beta of fusion alphas is 0.4%–0.6%, a level sufficient for the study of alpha-induced collective effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 56 (1985), S. 981-983 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The design and operation of instrumentation included in the gas injection system of the Tokamak Fusion Test Reactor (TFTR) for torus pressure and gas flow measurements are described. Magnetically shielded ion gauges, located on the torus boundary, are used for fast (1 kHz) torus pressure measurements over the range 10−7–10−3 Torr. Gas injection assemblies comprising an array of piezoelectric gas injection valves are situated at three toroidal locations. The gas injection valves are programmed for various discharge conditions including feedback control from the torus pressure gauges and plasma density measurement. Gas flow through the injection valves is monitored by strain-gauge-type pressure transducers on each injection valve. The resulting gas flow measurements are used for gas fueling, particle balance, and recycling studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...