Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0992-7689
    Keywords: Ionosphere (polar ionosphere) ; Magnetospheric physics (magnetosphere-ionosphere interaction; solar wind-magnetosphere interactions)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Using the Equator-S spacecraft and SuperDARN HF radars an extensive survey of bursty reconnection at the magnetopause and associated flows in the polar ionosphere has been conducted. Flux transfer event (FTE) signatures were identified in the Equator-S magnetometer data during periods of magnetopause contact in January and February 1998. Assuming the effects of the FTEs propagate to the polar ionosphere as geomagnetic field-aligned-currents and associated Alfveén-waves, appropriate field mappings to the fields-of-view of SuperDARN radars were performed. The radars observed discrete ionospheric flow channel events (FCEs) of the type previously assumed to be related to pulse reconnection. Such FCEs were associated with ∼80% of the FTEs and the two signatures are shown to be statistically associated with greater than 99% confidence. Exemplary case studies highlight the nature of the ionospheric flows and their relation to the high latitude convection pattern, the association methodology, and the problems caused by instrument limitations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Keywords: Ionosphere (active experiments) ; Radio science (instruments and techniques) ; Space plasma physics (instruments and techniques)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract SPEAR is a new polar cap HF radar facility which is to be deployed on Svalbard. The principal capabilities of SPEAR will include the generation of artificial plasma irregularities, operation as an ‘all-sky’ HF radar, the excitation of ULF waves, and remote sounding of the magnetosphere. Operation of SPEAR in conjunction with the multitude of other instruments on Svalbard, including the EISCAT Svalbard radar, and the overlap of its extensive field-of-view with that of several of the HF radars in the SuperDARN network, will enable in-depth diagnosis of many geophysical and plasma phenomena associated with the cusp region and the substorm expansion phase. Moreover, its ability to produce artificial radar aurora will provide a means for the other instruments to undertake polar cap plasma physics experiments in a controlled manner. Another potential use of the facility is in ‚field-line tagging’ experiments, for coordinated ground-satellite experiments. Here the scientific objectives of SPEAR are detailed, along with the proposed technical specifications of the system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...