Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    ISSN: 1432-1106
    Keywords: Visual system ; Perigeniculate nucleus ; GAD ; Immunocytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The perigeniculate nucleus of the cat (PGN) was examined at light and electron microscopic levels after immunocytochemical labeling for the gamma-aminobutyric acid (GABA) synthesizing enzyme, glutamic acid decarboxylase (GAD). In light microscopic sections, virtually all perikarya were found to be labeled (GAD+), as well as proximal dendrites, fibres and punctiform elements. Cells in the thalamic reticular nucleus (TRN) dorsal to PGN were also labeled. Ultrastructural analysis of PGN showed immunoreactivity in all somata, in dendrites and in the following vesicle containing profiles: 1.) F1 terminals, which are characterized by large size, dark mitochondria, and pleomorphic vesicles. These terminals form symmetrical synaptic contacts with somata, somatic spines and with dendrites of GAD+ PGN cells. 2.) F2 terminals, which are smaller than F1 terminals, contain also pleomorphic vesicles and frequently make serial synapses of the symmetric type with other F2 terminals. Presumably, F1 terminals are formed by collaterals of PGN-cell axons and F2 terminals by vesicle containing dendrites of PGN cells. Terminals devoid of immunoreactivity included: 1.) RLD terminals characterized by large size, round vesicles, dark mitochondria, and by asymmetric synaptic contacts with somata, especially with somatic spines, and with dendrites of GAD+ perigeniculate neurons; 2.) RSD terminals, characterized by small size, round vesicles and dark mitochondria, which make asymmetric synapses with GAD+ dendrites of medium and small size; 3.) Multivesicular (MV) terminals with variably shaped vesicles including dense core vesicles synapsing on GAD+ dendrites. There are reasons to believe that RSD terminals belong to corticofugal axons and RLD terminals to collateral axons of LGN relay cells. The origin of MV terminals remains to be determined. The GABAergic nature of the PGN cells conforms with the presumed function of these cells as mediators of inhibition of LGN relay cells. The complex synaptic relations observed between GAD+ elements in the PGN would allow for reciprocal inhibition between perigeniculate cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-1106
    Keywords: Acetylcholine ; Receptor antagonists ; Area 17 ; Mesencephalic reticular formation ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Stimulation of the mesencephalic reticular formation facilitates responses in the visual cortex elicited from the optic radiation. Using intraveneous administration of cholinergic antagonists we investigated in adult cats and two kittens whether this effect is mediated by cholinergic mechanisms. When administered alone the muscarinic antagonists atropine and scopolamine and the nicotinic antagonist mecamylamine failed to block reticular facilitation and sometimes even enhanced the effects of reticular stimulation. However, when administered in combination muscarinic and nicotinic antagonists eliminated or significantly reduced the facilitation. This was even true when the two antagonists were administered with a time lag of several hours. These results support the notion that reticular facilitation of cortical responses is mediated by cholinergic mechanisms and suggest that this effect is mediated either by a receptor with a mixed pharmacological property or by two independent pathways acting via nicotinic and muscarinic receptors. This hypothesis is discussed in the context of recent evidence on cholinergic transmission and earlier data on the pharmacology of reticular arousal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 13
    ISSN: 1432-1106
    Keywords: Excitotoxin lesion ; Basal forebrain ; Area 17 ; Mesencephalic reticular formation ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Cholinergic afferents to the neocortex controlled by the mesencephalic reticular formation (MRF) are known to transiently facilitate cortical excitability. In an attempt to identify the pathway mediating this effect in the cat visual cortex we combined retrograde tracing techniques with immunocytochemical methods to visualize the acetylcholine-synthesizing enzyme choline acetyltransferase (ChAT). In addition we examined, in acute electrophysiological experiments, whether local neurotoxin injections into nuclei of the basal forebrain interfered with the reticular facilitation of cortical evoked potentials. Cholinergic projections to area 17 originate from different centers in the homolateral substantia innominata/internal capsule, the septal nuclei, and the nuclei of the diagonal band of Broca. No direct cholinergic projection from the MRF to the visual cortex was observed. Retrogradely labelled cells intermingled with ChAT-positive neurons in the brainstem generally revealed immunopositivity for catecholaminergic markers. Local injections of neurotoxins in the substantia innominata blocked reticular facilitation, whereas local lesions of the septal nuclei and the nuclei of the diagonal band had no effect on MRF-induced facilitation. The blockage of the reticular facilitation of cortical evoked responses after unilateral lesions of the substantia innominata was bilateral, suggesting a cooperative interaction between basal forebrain structures of the two hemispheres. The anatomical and physiological data are discussed with respect to possible mechanisms of transient brainstem influences on cortical excitability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 47 (1982), S. 209-222 
    ISSN: 1432-1106
    Keywords: Developmental plasticity ; Visual cortex ; Attention ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In five, dark-reared, 4-week-old kittens the posterior two thirds of the corpus callosum were split, and a lesion comprising the intralaminar nuclei was made of the left medial thalamic complex. In addition, the right eye was closed by suture. Postoperatively, the kittens showed abnormal orienting responses, neglecting visual stimuli presented in the hemifield contralateral to the side of the lesion. Sudden changes in light, sound, or somatosensory stimulation elicited orienting responses that all tended toward the side of the lesion. These massive symptoms faded within a few weeks but the kittens continued to neglect visual stimuli in the hemifield contralateral to the lesion when a second stimulus was presented simultaneously in the other hemifield. Electrophysiologic analysis of the visual cortex, performed after the end of the critical period, revealed marked interhemispheric differences. In the visual cortex of the normal hemisphere most neurons were monocular and responded exclusively to stimulation of the open eye, but otherwise had normal receptive field properties. In the visual cortex of the hemisphere containing the thalamic lesion, the majority of the neurons remained binocular. In addition, the selectivity for stimulus orientation and the vigor of responses to optimally aligned stimuli were subnormal on this side. Thus, the same retinal signals, which in the control hemisphere suppressed the pathways from the deprived eye and supported the development of normal receptive fields, failed to do either in the hemisphere containing the thalamic lesion. Apparently, experience-dependent changes in the visual cortex require both retinal stimulation and the functioning of diencephalic structures which modulate cortical excitability and control selective attention.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 44 (1981), S. 431-436 
    ISSN: 1432-1106
    Keywords: Cat ; Visual cortex ; Orientation columns ; Deoxyglucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Three-dimensional reconstructions of the orientation column system were obtained from the visual cortex of four cats using the deoxyglucose technique. One cat had normal visual experience, one was monocularly deprived and two had selective experience with vertical and horizontal contours, respectively. In areas 17 and 18 orientation columns form a remarkably regular system of equally spaced parallel bands whose trajectory is orthogonal to the borderline between areas 17 and 18. This topographic organization is resistant to manipulations of early visual experience.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-1106
    Keywords: Visual cortex ; Development ; Plasticity ; Central core ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Fifteen dark-reared, 4- to 5-week-old kittens were stimulated monocularly with patterned light while they were anesthetized and paralyzed. Six of these kittens were exposed to the light stimuli only, in four kittens the light stimuli were paired with electric stimulation of the mesencephalic reticular formation and in five kittens with electric activation of the medial thalamic nuclei. Throughout the conditioning period, the ocular dominance of neurons in the visual cortex was determined from evoked potentials that were elicited either with electric stimulation of the optic nerves or with phase reversing gratings of variable spatial frequencies. In two kittens, ocular dominance changes were assessed after the end of the conditioning period by analyzing single unit receptive fields. Monocular stimulation with patterned light induced a marked shift of ocular dominance toward the stimulated eye, when the light stimulus was paired with electric activation of either the mesencephalic reticular formation or of the medial thalamus. Moreover, a substantial fraction of cells acquired mature receptive fields. No such changes occurred with light or electric stimulation alone. It is concluded that central core projections which modulate cortical excitability gate experience-dependent modifications of connections in the kitten visual cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-1106
    Keywords: Visual cortex ; Development ; Orientation columns ; Deoxyglucose
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary and Conclusions In six dark reared, 4-weak-old kittens visual experience was restricted to contours of a single orientation, horizontal or vertical, using cylindrical lenses. Subsequently, the deoxyglucose method was used to determine whether these artificial raising conditions had affected the development of orientation columns in the visual cortex. After application of the deoxyglucose pulse one hemifield was stimulated with vertical, the other with horizontal contours. Thus, from interhemispheric comparison, changes in columnar systems corresponding to experienced and inexperienced orientations could be determined. The following results were obtained: (1) Irrespective of the restrictions in visual experience, orientation columns develop in areas 17, 18, 19 and in the visual areas of the posterior suprasylvian sulcus. (2) Within area 17, spacing between columns encoding the same orientations is remarkably regular (1 mm), is not influenced by selective experience and shows only slight interindividual variation. (3) In non-striate areas the spacing of columns is less regular and the spatial frequency of the periodicity is lower. (4) The modifiability of this columnar pattern by selective experience is small within the granular layer of striate cortex but substantial in non-granular layers: Within layer IV columns whose preference corresponds to the experienced orientation are wider and more active than those encoding the orthogonal orientation but the columnar grid remains basically unaltered. Outside layer IV the columnar system is maintained only for columns encoding the experienced orientations. The deprived columns by contrast frequently fail to extend into non-granular layers and remain confined to the vicinity of layer IV. (5) These modifications in the columnar arrangement are more pronounced in striate cortex than in non-striate visual areas and, within the former, more conspicuous in the central than in the peripheral representation of the visual field. It is concluded that within layer IV the blue print for the system of orientation columns is determined by genetic instructions: first order cells in layer IV develop orientation selectivity irrespective of experience whereby the preference for a particular orientation is predetermined by the position in the columnar grid. Dependent on experience is, however, the expansion of the columnar system from layer IV into non-granular layers. It is argued that all distortions following selective rearing can be accounted for by competitive interactions between intracortical pathways, the mechanisms being identical to those established for competitive processes in the domain of ocular dominance columns. It is proposed that such experience dependent modifiability of connections between first and second order cells is a necessary prerequisite for the development of orientation selectivity in cells with large and complex receptive fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 40 (1980), S. 305-310 
    ISSN: 1432-1106
    Keywords: Squint amblyopia ; Visual cortex ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In two dark reared, 40 day old kittens unilateral divergent squint was induced be resecting the insertion of the medial rectus muscle. Behavioural testing revealed that the kittens used only the normal eye for fixation. Contrast sensitivity functions of the two eyes and visual acuity were determined behaviourally in a jumping stand whereby the kittens had to discriminate sine-wave gratings or variable spatial frequency and contrast from a flux equated homogeneous field. At photopic luminance levels the deviated eye showed a significant deficit in both kittens. This impairment was apparent over the whole range of spatial frequencies (0.18–0.99 c/deg) except for the lowest spatial frequency in one kitten. The interocular difference of visual acuity disappeared at scotopic luminance levels. In subsequent electrophysiological experiments contrast sensitivity functions were determined from cortical evoked potentials that were elicited by phase reversing square wave gratings. Comparison between behavioural and electrophysiological results revealed a very good correspondence between the two sets of data. It is concluded that exotropia without alternating fixation leads to functional amblyopia of the deviated eye.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 40 (1980), S. 354-357 
    ISSN: 1432-1106
    Keywords: Acuity loss ; Vertical contours ; Squint amblyopia
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Grating acuity was tested in seven squint amblyopes as a function of orientation. In the squinting eyes of six unilateral amblyopes, the resolution for vertical gratings was much lower (by about 1/2 octave) than that of horizontal gratings. The non-amblyopic eyes of these subjects showed a normal “oblique effect”. In one bilateral amblyope the selective loss of resolution for vertical contours was found in both eyes. This effect is well correlated with the reduced incidence of cortical cells encoding vertical contours in squinting cats. Both findings can be interpreted as an adaptive modification of the central visual system to alleviate the selective doubling of the vertical contours caused by strabismus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...