Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1939
    Keywords: Carbon isotope composition ; Leaf area index ; Nitrogen-use efficiency ; Phosphorus-use efficiency ; Specific leaf mass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to 1800 mm annual precipitation. Koa stands along the gradient had basal area ranging from 8 to 42 m2/ha, LAI ranging from 1.4 to 5.4, and wood increment ranging from 0.7 to 7.1 tonnes/ha/year. N, P, and K contents by weight of sun leaves (phyllodes) were negatively correlated with specific leaf mass (SLM, g m-2) across sites; on a leaf area basis, N increased whereas P and K decreased with SLM. LAI, aboveground woody biomass increment, and production per unit leaf area (E) increased as phyllode δ13C became more negative. The δ13C data suggested that intrinsic water-use efficiency (ratio of assimilation to conductance) increased as water availability decreased. In five of the six sites, phyllode P contents increased as LAI increased, but biomass increment and E were not correlated with phyllode nutrient contents, suggesting that productivity was limited more by water than by nutrient availability. Because vapor pressure deficits increased with decreasing elevation, actual water-use efficiency (ratio of assimilation to transpiration) was lower at drier, low-elevation sites. There was a trade-off between intrinsic water-use efficiency and production per unit of canopy N or P across the gradient. In summary, koa responds to water limitation both by reducing stand LAI and by adjusting gas exchange, which results in increased intrinsic water-use efficiency but decreased E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-9680
    Keywords: Acacia koa ; allometric equations ; canopy analysis ; cattle grazing ; LAI-2000
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Tree growth and competition with other vegetation are strongly affected by leaf area, which can be modified by livestock browsing in silvopastoral systems. We studied the relationship of leaf area to stem diameter and sapwood area of koa (Acacia koa), a valuable hardwood tree species native to Hawaii. Because browsing alters allometric relationships, we compared harvest data with two non-destructive optical techniques (LAI-2000 canopy analyzer and photographic estimation of projected crown area). Destructive harvests of 30 trees showed that leaf area was equally well correlated with the diameter at breast height (dbh) or sapwood area of trees ranging from 2 to 16 cm in diameter, 1.3 m above ground level. Both optical techniques correlated with the leaf areas obtained by destructive analysis, but the photographic estimation of projected crown area provided more reliable estimates than the canopy analyzer. The photographic method based on projected crown area provided reliable estimates of leaf area removal within the browse zone (less than 2 m height). this method provides a simple, low-cost means of obtaining non-destructive estimates of changes in leaf area in isolated trees.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...