Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Winter frosts caused by radiative cooling were hypothesized to limit successful reintroduction of Hawaiian plants other than Acacia koa to alien-dominated grasslands above 1700 m elevation. We determined, in the laboratory, the temperature at which irreversible tissue damage occurred to Metrosideros polymorpha leaves. We also conducted a field study of this species to determine if (1) leaf damage was correlated with sub-zero leaf temperatures, (2) radiative cooling could be moderated by canopies of A. koa, and (3) low soil temperatures contributed to seedling damage. The last was evaluated by thermally buffering seedlings with water-filled bladders placed at their base to keep roots warm, or by installing a radiation shield to reduce early morning transpiration when water uptake from cold soils would be least. Leaf temperatures were monitored between midnight and 7:00 a.m. using fine-wire thermocouples, and leaf damage was recorded monthly. In the laboratory, supercooling protected leaves from mild sub-zero temperatures; irreversible tissue damage occurred at about −8°C. In the field, leaf damage was strongly correlated with degree-hours below freezing. Unprotected seedlings suffered the greatest leaf damage. Those sheltered under A. koa trees rarely experienced temperatures below −3°C, and damage was minimal. Shaded and thermally buffered seedlings suffered less damage than unprotected plants, probably due to elevated leaf temperatures rather than improved water relations. Using A. koa or artificial devices to reduce radiative cooling during winter nights should enhance establishment of M. polymorpha in high-elevation rangeland.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Increasing leaf to air vapor pressure deficit (VPD) caused reductions in stomatal conductance of both current year and previous season needles of Pseudotsuga menziesii saplings. The stomata of current year needles were found to be more responsive to changes in VPD than those of previous season needles. The reductions in stomatal conductance of current year needles were not associated with decreases in xylem pressure potential. In fact, the reductions in stomatal conductance of current year needles were sometimes sufficient to reduce transpiration and thus raise xylem pressure potential even though VPD was increasing. There was a decline in stomatal responsiveness to VPD in current year needles between early and late summer. Pressure-volume curves determined for different age needles at different times of the year suggested that differences and changes in stomatal responsiveness to VPD may have been caused in part by differences and changes in needle water potential components. Hexane washes of current year needles during the late summer succeeded in partially restoring their VPD sensitivity, suggesting that changes in the water permeability of the external cuticle during needle maturation may also have played a role in causing the summer decline in VPD responsiveness. In both current and previous year needles VPD-induced changes in stomatal conductance had a greater relative effect on transpiration (q w) than on net photosynthesis (PhN). In maturing needles the ratio of the sensitivities of transpiration and net photosynthesis to changes in stomatal conductance, (∂q w/∂g s)/∂PhN/∂g s), remained nearly constant as VPD was varied. This provides experimental support for a recent hypothesis that stomata respond to environmental fluctuations in such a manner as to maintain the above ratio constant, which optimizes CO2 uptake with respect to water loss.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Carbon isotope composition ; Leaf area index ; Nitrogen-use efficiency ; Phosphorus-use efficiency ; Specific leaf mass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to 1800 mm annual precipitation. Koa stands along the gradient had basal area ranging from 8 to 42 m2/ha, LAI ranging from 1.4 to 5.4, and wood increment ranging from 0.7 to 7.1 tonnes/ha/year. N, P, and K contents by weight of sun leaves (phyllodes) were negatively correlated with specific leaf mass (SLM, g m-2) across sites; on a leaf area basis, N increased whereas P and K decreased with SLM. LAI, aboveground woody biomass increment, and production per unit leaf area (E) increased as phyllode δ13C became more negative. The δ13C data suggested that intrinsic water-use efficiency (ratio of assimilation to conductance) increased as water availability decreased. In five of the six sites, phyllode P contents increased as LAI increased, but biomass increment and E were not correlated with phyllode nutrient contents, suggesting that productivity was limited more by water than by nutrient availability. Because vapor pressure deficits increased with decreasing elevation, actual water-use efficiency (ratio of assimilation to transpiration) was lower at drier, low-elevation sites. There was a trade-off between intrinsic water-use efficiency and production per unit of canopy N or P across the gradient. In summary, koa responds to water limitation both by reducing stand LAI and by adjusting gas exchange, which results in increased intrinsic water-use efficiency but decreased E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1939
    Keywords: Key words Hydraulic conductance ; Sap flow ; Stomata ; Transpiration ; Tropical forest trees
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We studied regulation of whole-tree water use in individuals of five diverse canopy tree species growing in a Panamanian seasonal forest. A construction crane equipped with a gondola was used to access the upper crowns and points along the branches and trunks of the study trees for making concurrent measurements of sap flow at the whole-tree and branch levels, and vapor phase conductances and water status at the leaf level. These measurements were integrated to assess physiological regulation of water use from the whole-tree to the single-leaf scale. Whole-tree water use ranged from 379 kg day−1 in a 35 m-tall Anacardium excelsum tree to 46 kg day−1 in an 18 m-tall Cecropia longipes tree. The dependence of whole-tree and branch sap velocity and sap flow on sapwood area was essentially identical in the five trees studied. However, large differences in transpiration per unit leaf area (E) among individuals and among branches on the same individual were observed. These differences were substantially reduced when E was normalized by the corresponding branch leaf area:sapwood area ratio (LA/SA). Variation in stomatal conductance (g s) and crown conductance (g c), a total vapor phase conductance that includes stomatal and boundary layer components, was closely associated with variation in the leaf area-specific total hydraulic conductance of the soil/leaf pathway (G t). Vapor phase conductance in all five trees responded similarly to variation in G t. Large diurnal variations in G t were associated with diurnal variation in exchange of water between the transpiration stream and internal stem storage compartments. Differences in stomatal regulation of transpiration on a leaf area basis appeared to be governed largely by tree size and hydraulic architectural features rather than physiological differences in the responsiveness of stomata. We suggest that reliance on measurements gathered at a single scale or inadequate range of scale may result in misleading conclusions concerning physiological differences in regulation of transpiration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1939
    Keywords: Light interception ; Leaf orientation ; Canopy architecture ; Larrea tridentata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary At sites in the United States, creosote bushes (Larrea tridentata (DC.) Cov.) orient foliage clusters predominantly toward the southeast. Foliage of bushes at the southernmost distribution extreme in Mexico shows no predominant orientation. Clusters at all sites are inclined between 33° and 71° from the horizontal. Inclinations are steeper in the drier and hotter Mojave Desert than in the Chihuahuan Desert. Individual leaflets, though not measured, appear more randomly oriented than foliage clusters. In several populations studied, branches were shorter in the southeastern sectors of the crown, reducing self-shading early in the morning. Measurements of direct beam radiation interception by detached branches, using digital image processing, indicated that foliage clusters oriented toward the southeast exhibited less self-shading during spring mornings than clusters oriented northeast. This effect was not apparent at the summer solstice. This type of canopy architecture may tend to minimize self-shading during the morning hours when conditions are more favorable for photosynthesis, resulting in an improved daily water use efficiency.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 54 (1982), S. 270-274 
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Attached twigs of young Pseudotsuga menziesii (Mirb.) Franco plants were subjected to variations in irradaince. Stomatal responsiveness to irradiance, measured in an open type gas exchange system, varied seasonally. During the autumn and winter, stomatal conductance was relatively unresponsive to changes in irradiance, but during the summer stomatal conductance decreased in response to reduced irradiance. The summer stomatal response to irradiance was such that a nearly constant ratio of stomatal conductance to net photosynthesis was maintained as irradiance was varied. This caused intercellular CO2 concentration (c i) and water use efficiency (net CO2 uptake/transpiration) to also remain relatively constant. At constant irradiance, stomatal conductance was relatively insensitive to experimentally-induced changes in c i. This, and the observation that c i remained relatively constant as irradiance was varied, suggest that changes in c i played a minor role in mediating the stomatal response to light. The ecological significance of the seasonal changes in stomatal response to light is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1939
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Three-dimensional empirical models were constructed, depicting the response surface of water use efficiency (WUE) of Pseudotsuga menziesii saplings in relation to different levels of both irradiance and leaf-to-air vapor pressure difference (VPD). The two models developed depict responses of (1) previous season needles during autumn, winter, and early spring and (2) current year needles during the summer. The steady-state stomatal and gas exchange responses to irradiance and VPD suggest that factors determining adaptive stomatal performance in Douglas fir are complex and may differ according to needle age, developmental stage, and season. Stomatal response to light varied seasonally, with the stomata being responsive during the summer and unresponsive during the autumn, winter, and early spring. Previous season needles exhibit higher maximum WUE, but can be less conservative in their total use of water than the more VPD-sensitive maturing needles. Observations of dynamic stomatal responses to step changes in VPD and irradiance were used to propose a simple model depicting a combined stomatal response to sudden changes in both VPD and irradiance similar to those that would occur with the passage of sunflecks in a forest canopy. Step changes in VPD caused transient stomatal movements opposite in direction to that of the final response, while step changes in irradiance resulted in movements only in the direction of the expected final response. On the basis of the model, it was hypothesized that the dynamic response to changes in VPD may serve to enhance the speed of stomatal opening and closing when changes in irradiance are rapid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: growth ; ion-uptake ; salinity ; salt tolerance ; sugarcane ; transpiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of salinity on leaf growth, initiation and senescence, on transpiration rates, on leaf water potential and on uptake and distribution of several ions were studied in two sugarcane cultivars differing in salinity sensitivity. Plants, growing in a growing mixture in pots, were exposed to salinized irrigation water for 68 days, starting 60 days after planting. EC values of the irrigation water were 1.0, 2.0, 4.0, 8.0 and 12 dS/m, obtained by using a mixture of NaCl and CaCl2. Plants were also grown in nutrient solution and were at a similar age when exposed to a salinity level of 3 dS/m for 30 days followed by 6.0 dS/m for an additional 30 days. Two Na:Ca ratios of 18:1 and 1:2 were used for salinization of the nutrient solution. Both leaf dry weight and area decreased with increasing salinity, but in the more salinity tolerant cultivar H69-8235, the decrease was moderate. Salinity hardly reduced average area per leaf in H69-8235, while the number of leaves declined sharply. This decline was caused by enhanced senescence of mature leaves and not by a decreased rate of leaf initiation. In the more sensitive cultivar, H65-7052, leaf area and initiation of new leaves were sharply reduced by salinity while leaf senescence was less affected. Leaf water potential decreased during the early stages of salinity exposure, and the reduction in water potential was larger in H69-8235. Salinity also decreased the rate of transpiration rate but to a lesser extent than leaf development and growth. The accumulation of Cl and Na in the TVD (top visible dewlap) leaf of the tolerant cultivar H69-8235 was greater than in the sensitive cultivar H65-7052. The concentration of Cl in the TVD leaf was more than 10 times that of Na in both cultivars. The concentration of both ions, but not of K, increased during the early stages of salinity exposure and then remained constant. A gradient in concentration of Cl and Na over the plant was found in both cultivars at all salinity levels, and was steepest between the TVD and younger leaves. No specific Na effect on leaf growth or transpiration could be detected. The accumulation of Cl and Na but not of K occurred primarily in the roots rather than in the leaves and stalks.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...