Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 6 (2000), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We examined interactions between temperature, soil development, and decomposition on three elevational gradients, the upper and lower ends of each being situated on a common lava flow or ash deposit. We used the reciprocal transplant technique to estimate decomposition rates of Metrosideros polymorpha leaf litter during a three-year period at warm and cool ends of each gradient. Litter quality was poorest early in soil development or where soils were most intensely leached and waterlogged. In situ litter decomposition was slowest on the young 1855 flow (k=  0.26 and 0.14 at low and high elevation, respectively). The more fertile Laupahoehoe gradient also supported more rapid in situ decay at the warmer low elevation site (k=  0.90) than at high elevation (k=  0.51). The gradient with the most advanced soil development showed no difference for in situ decay at low and high elevations (k=  0.88 and 0.99, respectively) probably due to low soil nutrient availability at low elevation, which counteracted the effect of warmer temperature. Comparisons of in situ, common litter, and common site experiments indicated that site factors influenced decomposition more than litter quality did. The effect of temperature, however, could be over-ridden by soil fertility or other site factors. Field gradient studies of this sort yield variable estimates of apparent Q10, even under the best conditions, due to interactions among temperature, moisture, nutrient availability, decomposer communities and litter quality. Such interactions may be as likely to occur with changing climate as they are along elevational gradients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1526-100X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Winter frosts caused by radiative cooling were hypothesized to limit successful reintroduction of Hawaiian plants other than Acacia koa to alien-dominated grasslands above 1700 m elevation. We determined, in the laboratory, the temperature at which irreversible tissue damage occurred to Metrosideros polymorpha leaves. We also conducted a field study of this species to determine if (1) leaf damage was correlated with sub-zero leaf temperatures, (2) radiative cooling could be moderated by canopies of A. koa, and (3) low soil temperatures contributed to seedling damage. The last was evaluated by thermally buffering seedlings with water-filled bladders placed at their base to keep roots warm, or by installing a radiation shield to reduce early morning transpiration when water uptake from cold soils would be least. Leaf temperatures were monitored between midnight and 7:00 a.m. using fine-wire thermocouples, and leaf damage was recorded monthly. In the laboratory, supercooling protected leaves from mild sub-zero temperatures; irreversible tissue damage occurred at about −8°C. In the field, leaf damage was strongly correlated with degree-hours below freezing. Unprotected seedlings suffered the greatest leaf damage. Those sheltered under A. koa trees rarely experienced temperatures below −3°C, and damage was minimal. Shaded and thermally buffered seedlings suffered less damage than unprotected plants, probably due to elevated leaf temperatures rather than improved water relations. Using A. koa or artificial devices to reduce radiative cooling during winter nights should enhance establishment of M. polymorpha in high-elevation rangeland.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1939
    Keywords: Carbon isotope composition ; Leaf area index ; Nitrogen-use efficiency ; Phosphorus-use efficiency ; Specific leaf mass
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We tested whether variation in growth of native koa (Acacia koa) forest along a rainfall gradient was attributable to differences in leaf area index (LAI) or to differences in physiological performance per unit of leaf area. Koa stands were studied on western Kauai prior to Hurricane Iniki, and ranged from 500 to 1130 m elevation and from 850 to 1800 mm annual precipitation. Koa stands along the gradient had basal area ranging from 8 to 42 m2/ha, LAI ranging from 1.4 to 5.4, and wood increment ranging from 0.7 to 7.1 tonnes/ha/year. N, P, and K contents by weight of sun leaves (phyllodes) were negatively correlated with specific leaf mass (SLM, g m-2) across sites; on a leaf area basis, N increased whereas P and K decreased with SLM. LAI, aboveground woody biomass increment, and production per unit leaf area (E) increased as phyllode δ13C became more negative. The δ13C data suggested that intrinsic water-use efficiency (ratio of assimilation to conductance) increased as water availability decreased. In five of the six sites, phyllode P contents increased as LAI increased, but biomass increment and E were not correlated with phyllode nutrient contents, suggesting that productivity was limited more by water than by nutrient availability. Because vapor pressure deficits increased with decreasing elevation, actual water-use efficiency (ratio of assimilation to transpiration) was lower at drier, low-elevation sites. There was a trade-off between intrinsic water-use efficiency and production per unit of canopy N or P across the gradient. In summary, koa responds to water limitation both by reducing stand LAI and by adjusting gas exchange, which results in increased intrinsic water-use efficiency but decreased E.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...