Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1995-1999  (14)
  • ddc:000  (14)
Source
Years
Year
Language
  • 1
    Publication Date: 2014-11-11
    Description: We study the parallelization of the steepest-edge version of the dual simplex algorithm. Three different parallel implementations are examined, each of which is derived from the CPLEX dual simplex implementation. One alternative uses PVM, one general-purpose System V shared-memory constructs, and one the PowerC extension of C on a Silicon Graphics multi-processor. These versions were tested on different parallel platforms, including heterogeneous workstation clusters, Sun S20-502, Silicon Graphics multi-processors, and an IBM SP2. We report on our computational experience.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-26
    Description: This paper introduces a scheme of deriving strong cutting planes for a general integer programming problem. The scheme is related to Chvatal-Gomory cutting planes and important special cases such as odd hole and clique inequalities for the stable set polyhedron or families of inequalities for the knapsack polyhedron. We analyze how relations between covering and incomparability numbers associated with the matrix can be used to bound coefficients in these inequalities. For the intersection of several knapsack polyhedra, incomparabilities between the column vectors of the associated matrix will be shown to transfer into inequalities of the associated polyhedron. Our scheme has been incorporated into the mixed integer programming code SIP. About experimental results will be reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-09
    Description: In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so-called {\em bordered block diagonal form}. More precisely, given some matrix $A$, we try to assign as many rows as possible to some number of blocks of limited size such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the %LP- and MIP-libraries \Netlib{} and MIPLIB can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-11
    Description: In this paper we present the implementation of a branch-and-cut algorithm for solving Steiner tree problems in graphs. Our algorithm is based on an integer programming formulation for directed graphs and comprises preprocessing, separation algorithms and primal heuristics. We are able to solve all problem instances discussed in literature to optimality, including one to our knowledge not yet solved problem. We also report on our computational experiences with some very large Steiner tree problems arising from the design of electronic circuits. All test problems are gathered in a newly introduced library called {\em SteinLib} that is accessible via World Wide Web.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-02-26
    Description: This paper deals with a family of conjunctive inequalities. Such inequalities are needed to describe the polyhedron associated with all the integer points that satisfy several knapsack constraints simultaneously. Here we demonstrate the strength and potential of conjunctive inequalities in connection with lifting from a computational point of view.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-26
    Description: For $n\geq 6$ we provide a counterexample to the conjecture that every integral vector of a $n$-dimensional integral polyhedral pointed cone $C$ can be written as a nonnegative integral combination of at most $n$ elements of the Hilbert basis of $C$. In fact, we show that in general at least $\lfloor 7/6 \cdot n \rfloor$ elements of the Hilbert basis are needed.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-08-05
    Description: In this thesis we study and solve integer programs with block structure, i.\,e., problems that after the removal of certain rows (or columns) of the constraint matrix decompose into independent subproblems. The matrices associated with each subproblem are called blocks and the rows (columns) to be removed linking constraints (columns). Integer programs with block structure come up in a natural way in many real-world applications. The methods that are widely used to tackle integer programs with block structure are decomposition methods. The idea is to decouple the linking constraints (variables) from the problem and treat them at a superordinate level, often called master problem. The resulting residual subordinate problem then decomposes into independent subproblems that often can be solved more efficiently. Decomposition methods now work alternately on the master and subordinate problem and iteratively exchange information to solve the original problem to optimality. In Part I we follow a different approach. We treat the integer programming problem as a whole and keep the linking constraints in the formulation. We consider the associated polyhedra and investigate the polyhedral consequences of the involved linking constraints. The variety and complexity of the new inequalities that come into play is illustrated on three different types of real-world problems. The applications arise in the design of electronic circuits, in telecommunication and production planning. We develop a branch-and-cut algorithm for each of these problems, and our computational results show the benefits and limits of the polyhedral approach to solve these real-world models with block structure. Part II of the thesis deals with general mixed integer programming problems, that is integer programs with no apparent structure in the constraint matrix. We will discuss in Chapter 5 the main ingredients of an LP based branch-and-bound algorithm for the solution of general integer programs. Chapter 6 then asks the question whether general integer programs decompose into certain block structures and investigate whether it is possible to recognize such a structure. The remaining two chapters exploit information about the block structure of an integer program. In Chapter 7 we parallelize parts of the dual simplex algorithm, the method that is commonly used for the solution of the underlying linear programs within a branch-and-cut algorithm. In Chapter 8 we try to detect small blocks in the constraint matrix and to derive new cutting planes that strengthen the integer programming formulation. These inequalities may be associated with the intersection of several knapsack problems. We will see that they significantly improve the quality of the general integer programming solver introduced in Chapter 5.
    Keywords: ddc:000
    Language: English
    Type: doctoralthesis , doc-type:doctoralThesis
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-02-26
    Description: We show that, given a wheel with nonnegative edge lengths and pairs of terminals located on the wheel's outer cycle such that the terminal pairs are in consecutive order, then a path packing, i.~e., a collection of edge disjoint paths connecting the given terminal pairs, of minimum length can be found in strongly polynomial time. Moreover, we exhibit for this case a system of linear inequalities that provides a complete and nonredundant description of the path packing polytope, which is the convex hull of all incidence vectors of path packings and their supersets.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-26
    Description: We study a network configuration problem in telecommunications where one wants to set up paths in a capacitated network to accommodate given point-to-point traffic demand. The problem is formulated as an integer linear programming model where 0-1 variables represent different paths. An associated integral polytope is studied and different classes of facets are described. These results are used in a cutting plane algorithm. Computational results for some realistic problems are reported.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-08-05
    Description: In this paper we investigate whether matrices arising from linear or integer programming problems can be decomposed into so-called {\em bordered block diagonal form}. More precisely, given some matrix $A$, we try to assign as many rows as possible to some number of blocks of limited size such that no two rows assigned to different blocks intersect in a common column. Bordered block diagonal form is desirable because it can guide and speed up the solution process for linear and integer programming problems. We show that various matrices from the LP- and MIP-libraries NETLIB and MITLIB can indeed be decomposed into this form by computing optimal decompositions or decompositions with proven quality. These computations are done with a branch-and-cut algorithm based on polyhedral investigations of the matrix decomposition problem. In practice, however, one would use heuristics to find a good decomposition. We present several heuristic ideas and test their performance. Finally, we investigate the usefulness of optimal matrix decompositions into bordered block diagonal form for integer programming by using such decompositions to guide the branching process in a branch-and-cut code for general mixed integer programs.
    Keywords: ddc:000
    Language: English
    Type: reportzib , doc-type:preprint
    Format: application/postscript
    Format: application/postscript
    Format: application/pdf
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...