Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1990-1994  (4)
  • Mutagen hyper-resistance  (3)
  • 3-carbethoxypsoralen  (1)
  • 8-methoxypsoralen  (1)
  • Oxidative stress
Material
Years
Year
Keywords
  • 1
    ISSN: 1432-0983
    Keywords: Mutagen hyper-resistance ; Yeast ; Base sequence ; Gene disruption
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A multi-copy plasmid containing the SNQ3 gene confers hyper-resistance to 4-nitroquinoline-N-oxide (4NQO), Trenimon, MNNG, cycloheximide, and to sulfometuron methyl in yeast transformants. Restriction analysis, subcloning, and DNA sequencing revealed an open reading frame of 1950 bp on the SNQ3-containing insert DNA. Gene disruption and transplacement into chromosomal DNA yielded 4NQO-sensitive null mutants which were also more sensitive than the wild-type to Trenimon, cycloheximide, sulfometuron methyl, and MNNG. Hydropathic analysis showed that the SNQ3-encoded protein is most likely not membrane-bound, while the codon bias index points to low expression of the gene.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0983
    Keywords: Mutagen hyper-resistance ; Nitrogen mustard ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary A screening of haploid yeast strains for enhanced resistance to nitrogen mustard (HN2) yielded a recessive mutant allele, hnm1, that conferred hyper-resistance (HYR) to HN2. Diploids, homo- or heterozygous for the HNM1 locus, exhibit normal wild-type like resistance while homozygosity for hnm1 leads to the phenotype HYR to HN2. The hnm1 mutation could be found in yeast strains proficient or deficient in different DNA repair systems. In these mostly HN2-sensitive haploid repair-deficient mutants, hnm1 acted as a partial suppressor of HN2 sensitivity. All isolated recessive mutations conferring hyper-resistance belonged to a single complementations group. The HYR to HN2 phenotype was maximally expressed in growing cells and was associated with reduced mutability by HN2. HNM1 most probably controls uptake of HN2 which would be impaired in the hnm1 mutants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: pso and rad mutants ; Repair ; S. cerevisiae ; 8-methoxypsoralen ; 3-carbethoxypsoralen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mutant allele pso3-1 of Saccharomyces cerevisiae confers sensitivity to treatment with UV365nm (UVA) light-activated mono- and bi-functional psoralens. When pso3-1 is combined in double mutants with selected rad and pso mutant alleles and subjected to 8-MOP+UVA treatment, epistatic interaction with regard to survival is observed with pso1, pso2, and rad3. With the same treatment the combination of pso3-1 with rad6 and rad52 leads to synergistic interaction. For the monofunctional agent 3-carbethoxypsoralen (3-CPs) the analysis of double mutants yields the same results as with the bifunctional 8-methoxypsoralen (8-MOP) with the exception of the pso1-1pso3-1 double mutant. Here we find an additive interaction, i.e., the sensitivities of both parental strains are summed in the double mutant, which indicates a different substrate specificity of the repair activity encoded by the PSO1 and PSO3 genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1617-4623
    Keywords: Mutagen hyper-resistance ; 4-nitroquinolineN-oxide ; Yeast ; ATP-dependent permease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The yeast gene SNQ2 confers hyper-resistance to the mutagens 4-nitroquinoline-N-oxide (4-NQO) and Triaziquone, as well as to the chemicals sulphomethuron methyl and phenanthroline when present in multiple copies in transformants of Saccharomyces cerevisiae. Subcloning and sequencing of a 5.5 kb yeast DNA fragment revealed that SNQ2 has an open reading frame of 4.5 kb. The putative encoded polypeptide of 1501 amino acids has a predicted molecular weight of 169 kDa and has several hydrophobic regions. Northern analysis showed a transcript of 5.5 kb. Haploid cells with a disrupted SNQ2 reading frame are viable. The SNQ2-encoded protein has domains believed to be involved in ATP binding and is likely to be membrane associated. It most probably serves as an ATP-dependent permease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...