Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Blood flow  (1)
  • Cerebral ischemia  (1)
  • Ischemic cell necrosis  (1)
Materialart
Erscheinungszeitraum
Schlagwörter
  • 1
    ISSN: 1432-0533
    Schlagwort(e): Barbiturate ; Ischemic cell necrosis ; Mongolian gerbil ; Nimodipine ; Putrescine
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Twenty mongolian gerbils were anesthetized (1.5% halothane) and severe forebrain ischemia was produced in 15 animals by occluding both common carotid arteries. After 5 min ischemia brains were recirculated spontaneously. Immediately after ischemia nimodipine (1.5 mg/kg) or pentobarbital (50 mg/kg) was injected intraperitoneally into five animals. Four days later animals were reanesthetized (1.5% halothane); the brains were frozen with liquid nitrogen and cut in a cryostat. Ten-micrometer-thick coronal cryostat sections were stained with cresyl violet to assess the extent of ischemic cell damage in the lateral striatum, the CA1-layer of the hippocampus, and the thalamus. In addition, tissue samples (about 4 mg each) were taken from the lateral striatum, CA1 layer of the hippocampus and the thalamus. Putrescine levels were measured in these samples using reversed-phase high performance liquid chromatography and fluorescence detection. Reversible cerebral ischemia produced a significant increase in putrescine in the lateral striatum (from 11.15±0.79 to 44.83±11.76 nmol/g,P≤0.05), the CA1 subfield of the hippocampus (from 11.27±0.64 to 41.80±3.62 nmol/g,P≤0.05) and less so in the thalamus (from 11.28±0.70 to 16.50±1.71 nmol/g). Both postischemic nimodipine and barbiturate treatment of animals markedly reduced this increase in the lateral striatum to 14.09±1.41 and 15.75±1.38 nmol/g, respectively (P≤0.05 cf. untreated animals), to 29.82±6.04 and 23.21±3.12 nmol/g in the CA1-subfield of the hippocampus (P≤0.05 barbiturate-treated cf. untreated animals), and to 11.92±1.37 and 11.76±0.64 in the thalamus (P〈0.05 barbiturate-treated cf. untreated animals). Severe neuronal necroses were apparent in the lateral striatum in four out of five animals but in none of the nimodipine- or barbiturate-treated animals. In the CA1 subfield of the hippocampus the number of necrotic cells/mm stratum pyramidale amounted to 202.1±9.8, 141.9±4.2 and 78.0±33.4 in untreated, nimodipine- or barbiturate-treated animals, respectively (P≤0.05 barbiturate-treated cf. control animals). It is suggested that putrescine, produced during recirculation following ischemia, contributes to the manifestation of ischemic cell injury. Putrescine may thus be taken as a significant biochemical correlate of ischemic cell damage.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1432-0533
    Schlagwort(e): Brain ; Cerebral ischemia ; Gerbil ; Immunohistochemistry ; Hippocampus
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Anesthetized Mongolian gerbils were subjected to 5-min ischemia and 8 h of recirculation. Vibratiom sections were taken for studying changes in ornithine decarboxylase (ODC) immunoreactivity using an antiserum to ODC, and tissue samples were taken for measuring ODC activity. After 5-min ischemia and 8-h recirculation ODC activity increased 11.5-, 5.9-, and 7.9-fold in the cerebral cortex, striatum and hippocampus, respectively (P≤0.05 to 0.01). In the cortex, striatum and hippocampus of control animals immunoreactivity was low but clearly above the detection limit. The reaction was confined to neurons. After 5-min ischemia and 8-h recirculation a sharp increase in immunoreactivity was observed confined to neurons, indicating that the postischemic activation of polyamine metabolism is a neuronal response to ischemia. The immunoreactivity was markedly increased in the perinuclear cytoplasm and the dendrites. In the striatum the density of neurons exhibiting a sharp increase in immunoreactivity was more pronounced in the lateral than in the ventral part. In the hippocampus a strong reaction was present in all subfields but the CA1 subfield was particularly affected. The present study demonstrates for the first time that biosynthesis of a protein is markedly activated during the first 24 h of recirculation after 5-min cerebral ischemia of gerbils even in the vulnerable CA1 subfield, in which the overall protein synthesis is sharply reduced at the same time. Studying polyamine metabolism after ischemia may, thus, provide new information about the basic molecular mechanisms responsible for the altered gene expression after metabolic stress.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Acta neuropathologica 69 (1986), S. 139-147 
    ISSN: 1432-0533
    Schlagwort(e): Brain tumors ; Rats ; Blood flow ; Metabolism ; pH
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Medizin
    Notizen: Summary Experimental brain tumors were produced in rats by stereotactical implantation of various neoplastic cell lines (RG 2, RGl 2.2, G 13/11, F 98, RN 6, B 104, and E 367). Using autoradiographic, bioluminescence, and fluoroscopic methods, the following regional hemodynamic and metabolic parameters were measured on intact brain sections: blood flow, glucose utilization, pH, and the tissue content of ATP, glucose, and lactate. Tumors exnhibited a considerable diversity of regional blood flow and metabolic activity which did not correlate with the implanted cell line, location, or growth pattern. In solid regions of tumors the most consistent finding was a higher glucose utilization rate, a higher lactate, and a higher pH than in the surrounding brain tissue. Tumor ATP was slightly higher and glucose sightly lower than in the brain. In large spherical tumors a declining gradient of blood flow, glucose, and ATP from the periphery to the central parts was frequently observed, the decline being more pronounced for glucose than for ATP. In regions with high ATP tissue pH was usually higher than in the brain, but it decreased in areas in which ATP was depleted. The results obtained indicate that tumors are able to control tissue pH despite increased glycolysis and lactate production, as long as the energy state is not impaired. The mechanisms of pH regulation, therefore, have to be considered for establishing therapeutic procedures which intend to lower tumor pH for induction of tissue necrosis.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...