Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Chemistry  (18)
  • spectral decomposition  (2)
  • Cauchy-principal values  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Computing 31 (1983), S. 105-114 
    ISSN: 1436-5057
    Keywords: Primary 65D30 ; 65D32 ; secondary 41A55 ; Cauchy-principal values ; finite-part integrals ; convergence ; Jacobi quadratures ; Lagrange polynomials
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Description / Table of Contents: Zusammenfassung In diesem Artikel sind hinreichende Bedingungen, welche die Konvergenz von Quadratursätzen des Elliott-und Hunter-Typus für die Bestimmung von gewichteten Cauchy Hauptwert-Integralen der Form sicherstellen, hergeleitet. Die gleichzeitige Konvergenz beider Quadraturen im Intervall (−1, +1) wurde für eine Klasse von Hölderstetigen Funktionenf(f∈H μ ) nachgewiesen. Im Artikel sind auch Korrekturen von gewissen früheren Darlegungen über die Konvergenz von solchen Quadraturen enthalten. Ferner wurde eine einfache Herleitung der Elliott-und Hunterschen Quadratursätze für die Bestimmung derp-ten Ableitung des obenstehenden Integrals gegeben und hinreichende Bedingungen für die Konvergenz der Hunterschen Quadratur wurden erhalten. Die Konvergenz dieses Integrals wurde somit für Funktionenf, für welchef (p) ∈H μ gilt, sichergestellt.
    Notes: Abstract In this paper sufficient conditions are derived to ensure the convergence of the Elliott and Hunter types of quadrature rules for the evaluation of weighted Cauchy principal-value integrals of the form: The simultaneous convergence in the interval (−1, 1) of both quadratures was established for a class of Hölder-continuous functionsf(f∈H μ ). Corrections of some previous statements on the subject of convergence of such quadratures are also included. Moreover, a simple derivation of the Hunter and Elliott types of quadrature rules for the evaluation of the derivative of thep-th-order of the abovestated integral was given and sufficient conditions for the convergence of the Hunter-type quadrature were obtained. Thus, the convergence of this integral was ensured for functionsf such thatf (p) ∈H μ .
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 65 (1995), S. 86-98 
    ISSN: 1432-0681
    Keywords: Anisotropic bodies ; spectral decomposition ; elastic eigenstates ; strain ellipsoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinforced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, σ1 and σ2 which are shears (σ2 being a simple shear and σ1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components σ3, and σ4, are the orthogonal supplements to the shear subspace of σ1 and σ2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle ω. The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective σx, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property. An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the “projections” of σx in the principal3D stress space. Then, the characteristic state σ2 vanishes, whereas stress states σ1, σ3 and σ4 are represented by three mutually orthogonal vectors, oriented as follows: The ε3 and ε4 lie on the principal diagonal plane (σ3δ12) with subtending angles equaling (ω−π/2) and (π-ω), respectively. On the positive principal σ3-axis, ω is the eigenangle of the orthotropic material, whereas the ε1-vector is normal to the (σ3δ12)-plane and lies on the deviatoric π-plane. Vector ε2 is equal to zero. It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle ω, constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the σx-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the ε1-, ε3- and ε4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials. Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle ω alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle ω for isotropic materials is always equal to ωi = 125.26° and constitutes a minimum, the angle |ω| progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratiosE L/2GL of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle ω approaches its limits of 90 or 180°.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archive of applied mechanics 65 (1995), S. 86-98 
    ISSN: 1432-0681
    Keywords: Key words Anisotropic bodies ; spectral decomposition ; elastic eigenstates ; strain ellipsoid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Summary  The spectral decomposition of the compliance, stiffness, and failure tensors for transversely isotropic materials was studied and their characteristic values were calculated using the components of these fourth-rank tensors in a Cartesian frame defining the principal material directions. The spectrally decomposed compliance and stiffness or failure tensors for a transversely isotropic body (fiber-reinf orced composite), and the eigenvalues derived from them define in a simple and efficient way the respective elastic eigenstates of the loading of the material. It has been shown that, for the general orthotropic or transversely isotropic body, these eigenstates consist of two double components, σ 1 and σ 2, which are shears (σ 2 being a simple shear and σ 1, a superposition of simple and pure shears), and that they are associated with distortional components of energy. The remaining two eigenstates, with stress components σ 3 and σ 4, are the orthogonal supplements to the shear subspace of σ 1 and σ 2 and consist of an equilateral stress in the plane of isotropy, on which is superimposed a prescribed tension or compression along the symmetry axis of the material. The relationship between these superimposed loading modes is governed by another eigenquantity, the eigenangle ω. The spectral type of decomposition of the elastic stiffness or compliance tensors in elementary fourth-rank tensors thus serves as a means for the energy-orthogonal decomposition of the energy function. The advantage of this type of decomposition is that the elementary idempotent tensors to which the fourth-rank tensors are decomposed have the interesting property of defining energy-orthogonal stress states. That is, the stress-idempotent tensors are mutually orthogonal and at the same time collinear with their respective strain tensors, and therefore correspond to energy-orthogonal stress states, which are therefore independent of each other. Since the failure tensor is the limiting case for the respective σ x-tensors, which are eigenstates of the compliance tensor S, this tensor also possesses the same remarkable property. An interesting geometric interpretation arises for the energy-orthogonal stress states if we consider the “projections” of σ x in the principal 3D stress space. Then, the characteristic state σ 2 vanishes, whereas stress states σ 1, σ 3 and σ 4 are represented by three mutually orthogonal vectors, oriented as follows: The ε 3- and ε 4-vectors lie on the principal diagonal plane (σ3∂12) with subtending angles equaling (ω−π/2) and (π− ; ω), respectively. On the positive principal σ3-axis, ω is the eigenangle of the orthotropic material, whereas the ε 1-vector is normal to the (σ3∂12)-plane and lies on the deviatoric π-plane. Vector ε 2 is equal to zero. It was additionally conclusively proved that the four eigenvalues of the compliance, stiffness, and failure tensors for a transversely isotropic body, together with value of the eigenangle ω, constitute the five necessary and simplest parameters with which invariantly to describe either the elastic or the failure behavior of the body. The expressions for the σ x-vector thus established represent an ellipsoid centered at the origin of the Cartesian frame, whose principal axes are the directions of the ε 1, ε 3- and ε 4-vectors. This ellipsoid is a generalization of the Beltrami ellipsoid for isotropic materials. Furthermore, in combination with extensive experimental evidence, this theory indicates that the eigenangle ω alone monoparametrically characterizes the degree of anisotropy for each transversely isotropic material. Thus, while the angle ω for isotropic materials is always equal to ω i =125.26° and constitutes a minimum, the angle |ω| progressively increases within the interval 90–180° as the anisotropy of the material is increased. The anisotropy of the various materials, exemplified by their ratios E L /2G L of the longitudinal elastic modulus to the double of the longitudinal shear modulus, increases rapidly tending asymptotically to very high values as the angle ω approaches its limits of 90 or 180°.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 25 (1987), S. 1285-1294 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Structural changes which take place in many amorphous polymers, when they are annealed at temperatures near the glass transition temperature, have important theoretical, physical, and mechanical consequences. In this paper the possible existence of some local ordering in highlycrosslinked epoxy resins is studied. Three kinds of tests - TMA, DSC, and dynamic experiments - are used for a type of epoxy resin, cured with six different amounts of curing agent. In order to study the effect of the thermal history on the behavior of the polymer at its transition region, as well as the morphology of the materials tested, three different thermal treatments have been followed. Interesting results were derived concerning the influence of these parameters to these parameters to the mechanical characterization of the polymer.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 21 (1977), S. 689-701 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Thermal expansion coefficients and glass transition temperatures for metal-epoxy composites were determined experimentally. Results were in fair agreement with existing theories when certain fundamental assumptions were fulfilled. The effects of filler content and particle size as well as of adhesion between matrix and filler particles were investigated. The latter, in particular, was found to be of cardinal importance for the properties examined in the present work.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 22 (1978), S. 1417-1430 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A class of plasticized epoxy polymers were subjected to indentation tests over a wide range of temperature and plasticizer percentage. Constant or continuously varying temperature tests were carried out under constant load, and the materials exhibited creep behavior according to the temperature and the amount of plasticizer. Thermal expansion properties were also studied, and glass transition temperature as well as thermal expansion coefficients a1 and a2 were determined for each individual material. Theoretical predictions were found valid under the present conditions.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 22 (1978), S. 1725-1734 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A series of cold-setting epoxy polymers, plasticized with different amounts of plasticizer, ranging between 0 and 90% by weight of the amount of the epoxy prepolymer, were studied for their mechanical, optical, and fracture behavior properties. Quantities defining the mechanical properties were considered: the elastic modulus E, Poisson's ratio v, and fracture tensile stress σf. These were accurately measured with electric strain gauges in specimens tested in a 5-ton Instron tester. The optical behavior was characterized by the stress optical coefficients of the materials in both principal directions, α and β, as well as by the coefficient of optical anisotropy, ζ. The values of these quantities were measured by a Fizeau interferometric method. Finally, the optical method of caustics was applied to cracked epoxy polymer specimens to provide a new experimental technique for determining the stress optical properties of these polymers in terms of their mechanical properties. This method was used to check the previous results found by established experimental methods.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 22 (1978), S. 2245-2252 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A class of aluminum-filled epoxy composites were subjected to indentation tests over a wide temperature range. The tests were carried out under constant load and continuously varying temperature. The effect of aluminum content, applied load, and adhesion efficiency between matrix and aluminum particles on the indentation behavior was studied. Measured indentation values were found to lie within limits predicted theoretically.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 29 (1984), S. 2997-3011 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The static and dynamic elastic moduli of particulate composites, consisting of two phases, one of which has isotropic-elastic and the other linear viscoelastic properties, were studied. For this purpose a model defining the approximate equations for determining the elastic modulus of a composite from the properties of the constituent materials was used. Classical theory of elasticity was applied to this simplified model of a composite-unit cell. The following assumptions are made: (i) filler particles are spherical; (ii) fillers are completely dispersed; and (iii) the volume fraction of fillers is sufficiently small, so that any interaction among fillers may be neglected. A class of iron-filled epoxy composites was subjected to tests in order to compare the theoretical values with the experimental results. The elastic modulus calculated by the expression derived in this study seems to corroborate with the experimental results fairly well. Finally, by applying the correspondence principle to this expression, theoretical relationships for the dynamic storage and loss moduli were also derived.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 30 (1985), S. 621-645 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The adhesion between matrix and inclusions (fibers or particulates) in a composite material is one of principal factors characterizing the mechanical and physical behavior of the modern composite materials. All theoretical models describing these substances neglect to consider the influence of the boundary layer developed between phases during the preparation of the composite. In this paper, two versions of a theoretical model were introduced for the evaluation of this mesophase layer. It had been shown that this thin layer influences considerably the physical properties of the composite. It was assumed that the physical properties of the mesophase unfold from those of the hard-core fibers to those of the softer matrix. Thus, a multicylinder model was assumed, improving the classical two-cylinder model introduced by Hashin and Rosen for the representative volume element of the composite. Based on thermodynamic phenomena appearing at the glass transition temperatures of the composite and concerning the positions and the sizes of the heat-capacity jumps there, as well as on the experimental values of the longitudinal elastic modulus of the composite, the extent of the mesophase and the mechanical properties of the composite may be accurately evaluated. These versions of model are based on a previous one concerning a multilayer model, but they are considerably improved, in order to take into consideration, in a realistic manner, the physical phenomena developed in fiber-reinforced composites.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...