Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • hydrostatic pressure  (3)
  • Cell & Developmental Biology  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 94 (1986), S. 1-17 
    ISSN: 1432-1424
    Keywords: human red cell ; hydrostatic pressure ; ‘passive’ cation transport ; volume-sensitive KCl transport ; activation volume ; erythrocyte morphology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The effects of high hydrostatic pressure (up to 400 ATA) on the ‘passive’ (defined as ouabain + bumetanide + EGTA-insensitive) influx and efflux of radiotracer cations (K+ Rb+, Na+, Cs+) has been studied in human red cells suspended at different medium tonicities giving altered cell volumes. Under all conditions studied, cation permeability was raised at pressure, and at least two distinct components were found to comprise this flux. Thus, increasing pressure (1) caused a generalized increase in cation permeability which was unaffected by the anion present, demonstrated linear concentration dependence, and wasreduced with cell swelling, and (2) stimulated a specific KCl pathway which was Cl− dependent, demonstrated saturation kinetics with raised [K]o and wasincreased with cell swelling. High hydrostatic pressure caused a significant alteration to red cell morphology from the normal biconcave disc to cup-shaped forms and it is proposed that this is associated with the unmasking of the volume-sensitive KCl system (2).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: hydrostatic pressure ; KCl co-transport ; erythrocyte ; kinase ; phosphatase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of hydrostatic pressure on the KCl co-transporter of equine erythrocytes were studied to determine factors involved in its regulation. Pressure (0.1–40MPa) increased Cl−-dependent K+ transport; in the presence of the putative kinase inhibitor N-ethylmaleimide (NEM) which stimulates the transporter, or the phosphatase inhibitor calyculin A, pressure had no significant effect. The sequential application of NEM and calyculin A clamped the transporter at about 30% of maximal flux compared to NEM alone; pressure also had no further effect. These results suggest that pressure acts on the phosphorylation status of the transporter or regulatory peptide, rather than on the ion flux per se. Since the activation of the KCl co-transporter by pressure occurs without an apparent change in cell volume these results have implications for any universal model for the regulation of KCl co-transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 68 (1982), S. 47-56 
    ISSN: 1432-1424
    Keywords: hydrostatic pressure ; potassium flux ; erythrocyte membrane ; water of hydration ; anion effect ; thermodynamic analysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary The effects of hydrostatic pressure and temperature on the three components of K+ uptake in human red cells have been investigated, using ouabain and bumetanide to distinguish between the pump, passive diffusion and cotransport. The pressure sensitivity for passive diffusion has been shown to depend on the counter-ion present. The order of this effect, Cl−〉Br−〉NO 3 − 〉I−, is the same as for the ionic partial modal volumes and the Hofmeister series. We have analyzed our experimental results thermodynamically, and propose a model for the activated transition-state complex of the potassium ion which involves the loss of water molecules from the secondary hydration shell, cosphere II.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 154 (1993), S. 262-270 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Chondrocytes in cartilage are embedded in a matrix containing a high concentration of proteoglycans and hence of fixed negative charges. Their extracellular ionic environment is thus different from that of most cells, with extracellular Na+ being 250-350 mM and extracellular osmolality 350-450 mOsm. When chondrocytes are isolated from the matrix and incubated in standard culture medium (DMEM; osmolality 250-280 mOsm), their extracellular environment changes sharply. We incubated isolated bovine articular chondrocytes and cartilage slices in DMEM whose osmolity was altered over the range 250-450 mOsm by Na+ or sucrose addition. 35S-sulphate and 3H-proline incorporation rates were at a maximum when the extracellular osmolality was 350-400 mOsm for both freshly isolated chondrocytes and for chondrocytes in cartilage. The incorporation rate per cell of isolated chondrocytes was only 10% that of chondrocytes in situ both 4 and 24 hours after isolation. For freshly isolated chondrocytes, the rate increased 30-50% in DMEM to which NaCl or sucrose had been added to the increase osmolality. In chondrocytes incubated overnight in DMEM, the rate was greatest in DMEM of normal osmolality and fell from the maximum in proportion to the change in osmolality. The effects of surcrose addition on incorporation rates were similar but not identical to those of Na+ addition. Changes in cell volume might be linked to changes in synthesis rates since the cell volume of chondrocytes (measured by Coulter-counter) increased 30-40% when the cells are removed from their in situ environment into DMEM. Synthesis rates can thus be partly regulated by changes in extracellular osmolality, which in cartilage is controlled by proteoglycan concentration. This provides a mechanism by which the chondrocytes can rapidly respond to changes in extracellular matrix composition. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...