Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cerebellar cortex  (1)
  • Glutamic acid decarboxylase (GAD)  (1)
  • Haplotype analysis  (1)
  • 1
    ISSN: 1432-0568
    Keywords: Purkinje cell ; Dentate nucleus ; Cerebellar cortex ; GAD ; Immunocytochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Injections of characterized antibody against glutamic acid decarboxylase (GAD), the enzyme responsible for the synthesis of γ-aminobutyric acid (GABA), were made into the cerebellum. Small cortical injections of anti-GAD antibody produced labeled stellate, basket, Purkinje, and Golgi cells and their processes at the injection site. Anterograde transport of GAD antigen-antibody complexes in Purkinje cell axons caused intense labeling of terminals in deep cerebellar and several vestibular nuclei. Small groups of mossy fiber rosettes labeled and produced retrograde labeling and GAD immunoreactivity in a small number of pleomorphic neurons in the deep cerebellar nuclei. Injections into the dentate nucleus produced retrograde labeling in Purkinje cell bodies and anterograde label in a small number of mossy fiber rosettes. All projections conformed to previously reported topographic distributions of corticonuclear and nucleocortical cerebellar pathways. These findings confirm the GABA content of most Purkinje cell-deep nuclei connections and provide new evidence for a GABA component in part of the nucleocortical pathway in the cerebellum. Immunocytochemical controls for specificity were conducted by injections of preimmune rabbit serum as a substitute for GAD antibody. Only nonspecific labeling was obtained in these cases. Colchicine caused a cumulative enhancement of GAD immunoreactivity in all cases. The present studies indicate that the method of in vivo antibody injections can be utilized to study chemically specific connections in nervous tissue.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 71 (1988), S. 388-398 
    ISSN: 1432-1106
    Keywords: γ-Aminobutyric acid (GABA) ; Glutamic acid decarboxylase (GAD) ; Somatostatin ; Coexistence ; Immunohistochemistry
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of somatostatin-like immunoreactive (SS-LI) material and its colocalization with glutamic acid decarboxylase (GAD)-like immunoreactivity were studied in the rat hippocampus and dentate gyrus neurons using immunohistochemistry. In the dentate gyrus and CA1 region, SS-LI perikarya were concentrated in the hilus and in the stratum oriens, respectively, whereas immunoreactive cell bodies were rarely seen in other layers. Approximately half of the SS-LI neurons of the CA3 region were situated in the stratum oriens, the other half being scattered in strata pyramidale, lucidum and radiatum. About 90% of SS-LI neurons were also GAD-like immunoreactive, whereas about 14% of GAD-like immunoreactive (GAD-LI) neurons were SS-like immunoreactive. The percentage of GAD-LI neurons which were also immunoreactive for SS varied from one layer to the other. This percentage was about 30% in the hilus of the dentate gyrus and in the stratum oriens of the CA1 and CA3 regions; it was 5–10% in the strata pyramidale, lucidum and radiatum of the CA3 region and reached only 2% in the granule cell layer and molecular layer of the dentate gyrus and in the stratum pyramidale and stratum radiatum in the CA1 region. These observations indicate that the majority of SS-LI neurons in the rat hippocampal formation are a subpopulation of GABAergic neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1435-232X
    Keywords: Key words Wilson disease (WND) ; ATP7B ; Mutation analysis ; Haplotype analysis ; Short tandem repeat (STR) markers ; Taiwanese
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Wilson disease (WND) is caused by a deficiency of the copper-transporting enzyme, P-type ATPase (ATP7B). Twelve different mutations have previously been identified in Taiwan Chinese with Wilson disease. We, herein, report another 4 missense mutations, 1 of which is novel. We did haplotype analysis of Taiwanese WND chromosomes, using three well characterized short tandem repeat markers (haplotype was assigned in the order of D13S314-D13S301-D13S316). Association correlation was found between the mutations and their respective haplotypes. Haplotype-deduced pedigree analysis was shown to be helpful in the mutation analysis of WND chromosomes and in the molecular assessment of both pre-symptomatic WND patients and carriers. Given the complexity and heterogeneity of the mutation spectrum of ATP7B, we suggest that haplotype analysis should be performed before full-scale mutation analysis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...