Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Rabbit  (9)
  • Vestibular  (7)
  • Deiters neurones  (6)
  • Cerebellum  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 45 (1982), S. 233-242 
    ISSN: 1432-1106
    Keywords: Gerebellum ; Flocculus ; Eye movement ; Kainic acid ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The horizontal vestibulo-ocular reflex (HVOR) and optokinetic response (OKR) were examined in alert albino rabbits following unilateral flocculectomy. Chemical flocculectomy with local application of kainic acid was used to avoid the retrograde degeneration of inferior olive neurons that accompanies surgical flocculectomy. Effects of chemical flocculectomy, however, were identical to those of surgical flocculectomy. The following functional deficiencies were observed in the movements of the ipsilateral eye: (1) reduction of the HVOR gain; (2) increased lag of the HVOR phase; (3) increased non-linearity of the relationship between the HVOR gain and the amplitude of turntable rotation; (4) decreased OKR gain; (5) delay with increased variation in the OKR phase; (6) impairment of rapid visual-vestibular interaction; (7) loss of the adaptation of the HVOR. Only a transient depression of the HVOR gain was seen in the contralateral eye. Control experiments with lesions in the paraflocculus, nodulus, and uvula, or lobules VI and VII, revealed no such deficiencies, except that lesions in the nodulus and uvula produced marked advancement of the HVOR phase. The effects of flocculectomy are consistent with present knowledge of both neuronal circuitry and activity of the rabbit flocculus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 2 (1966), S. 330-349 
    ISSN: 1432-1106
    Keywords: Deiters neurones ; IPSP ; Monosynaptic ; Purkinje cells ; Inhibitory neurones
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary During stimulation of the anterior lobe of the cerebellum, postsynaptic potentials were recorded intracellularly from ipsilateral Deiters neurones of the cat. In the majority of examined cells, the inhibitory postsynapic potentials were induced with short latency; 1.06 msec on the average from lobule III or IV. The latency was longer (1.23 msec) when the lobule V was stimulated, while it was shorter (0.86 msec) from the juxtafastigial region. It follows that the IPSP was produced via a monosynaptic pathway at a conduction velocity of 15 to 20 m/sec. Recording of the extracellular field potentials and focal stimulation within and around Deiters' nucleus further indicated that the inhibitory impulses propagated out of the cerebellum along a remarkable bundle of fibres which terminated within Deiters' nucleus. These results are all explicable by assuming that the cerebellar Purkinje cells are inhibitory in nature and so produce IPSPs monosynaptically in Deiters neurones via the long corticofugal fibres. Monosynaptic EPSPs were also detected in some Deiters neurones. They are considered to be mediated by the other pathways formed of axon collaterals of the cerebellar afferents.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 6 (1968), S. 247-264 
    ISSN: 1432-1106
    Keywords: Deiters neurones ; Disinhibition ; Cerebellum ; Cats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Following the stimulation of cerebellar cortex, a slow depolarization developed in the neurones which were impaled with microelectrodes in the dorsal portion of the nucleus of Deiters. Characteristically, it was produced bilaterally from a wide area of the culmen and, with double shock stimulation at brief intervals, showed a marked potentiation, often in association with a later depression. After repetitive stimulation of the cerebellar cortex the slow depolarization was prolonged for a period of many seconds. Even stimulation of the spinal cord caused similar depolarization. By intracellular injection of currents and ions, the depolarization was shown to be disinhibition, i. e., removal of background inhibition. Accordingly, it was confirmed that there was a steady production of IPSPs in dorsal Deiters neurones, which diminished during the phase of disinhibition. As the possible source of these background IPSPs, the Purkinje cell axons within the nucleus of Deiters were found to be discharging rhythmically at a rate of 20–90/sec, and in fact they were depressed very effectively after cerebellar stimulation. At the same time, volleys along Purkinje cell axons produced by a testing cerebellar stimulation also were diminished, indicating a depression in the excitability of Purkinje cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 26 (1976), S. 89-103 
    ISSN: 1432-1106
    Keywords: Vestibular ; Oculomotor ; Canal ; Inhibition ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anesthetized albino rabbits, electric pulse stimulation was applied to ampullary branches of the vestibular nerve. Reflex discharges evoked from a canal in an extraocular muscle were depressed very effectively by conditioning stimulation at a certain other canal. The present systematic survey revealed that this reflex depression occurred specifically in 3 combinations of conditioning and testing canals; 1. anterior and posterior canals of the same side; 2. anterior and posterior canals of the opposite sides; and 3. horizontal canals of the two sides. Occurrence of postsynaptic inhibition in oculomotor neurons, on the other hand, was indicated by appearance of slow muscle potentials in extraocular muscles. It was confirmed that this motoneuronal inhibition did not contribute to the reflex depression in the above combination (1). Even in combinations (2) and (3), the accompanying motoneuronal inhibition was eliminated by adjusting intensities of canal stimuli or by severing its pathway in the medulla, or it was discriminated from the reflex depression by their different latencies and time courses. Hence, it was concluded that the reflex depression was attributable, at least largely, to non-motoneuronal inhibition, presumably postsynaptic inhibition at relay neurons for vestibulo-ocular reflexes. Slow muscle potentials evoked from a canal were also used as testing responses, but their depression could not be detected after conditioning at other canals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 14 (1972), S. 511-526 
    ISSN: 1432-1106
    Keywords: Vestibular ; IIIrd nucleus ; Flocculus ; Inhibition ; Picrotoxin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anaesthetized rabbits, the vestibulo-ocular reflex was evoked by electric stimulation of VIIIth nerve and was observed by recording postsynaptic potentials and relevant field potentials in Illrd nucleus. The electric stimulation of flocculus produced a prominent inhibition of the vestibulo-ocular reflex in both the inhibitory component relayed by the superior vestibular nucleus and the excitatory component mediated by the brachium conjunctivum. The excitatory component mediated by the medial vestibular nucleus appeared to be free of the flocculus inhibition. The flocculus inhibition was blocked very effectively by systemic injection of picrotoxin. That the flocculus inhibitory action is due to monosynaptic postsynaptic inhibition of secondary vestibular neurones was demonstrated by direct stimulation of, and also by recording from, the superior nucleus. Recording from the superior nucleus was also performed in anaesthetized cats. All of these above results indicate that Purkinje cells in flocculus projecting to vestibular and cerebellar nuclei cells have inhibitory synaptic action. Flocculus stimulation produced also an excitatory effect upon vestibular nuclei neurones. However, this effect could be attributed to intracerebellar activation of the primary vestibular fibers which pass into the flocculus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Deiters neurones ; Inhibition ; Climbing fibre responses ; Inferior olive
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intracellular recording with microelectrodes has been employed to reveal the causal relationship between the trans-synaptic activation of cerebellar Purkinje cells and the postsynaptic inhibition of Deiters neurones. Cerebellar stimulation produced in Deiters neurones not only monosynaptic IPSPs with latency of 0.9–1.5 msec, but also the delayed IPSPs at 1.5–9 msec. Correspondng to the latter, Purkinje cells were found to be activated orthodromically with the characteristic climbing fibre responses (CFRs), the latency varying from 0.8 up to 10 msec. On the other hand, stimulation of the inferior olive first induced EPSPs in Deiters neurones, presumably monosynaptically, then with a short delay of less than a millisecond CRFs in Purkinje cells of the anterior lobe, which in turn were succeeded by IPSPs in Deiters neurones after a further delay of a millisecond. Spinal stimulation activated the inferior olive trans-synaptically and thereby produced CFRs in Purkinje cells and a sequence of EPSPs and IPSPs in Deiters neurones. Close correlation between these spinal-induced events in both neurone species was further indicated by the concurrence of their fluctuations in intensity, these fluctuations being characteristic of the spino-olivary transmission mechanism. These results strongly support the postulate that the cerebellar Purkinje cells are inhibitory in their action upon Deiters neurones.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Vestibulospinal ; VIIIth nerve ; Deiters' nucleus ; Rabbit
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In anaesthetized rabbits, the medulla was surveyed with recording microelectrodes to identify different types of vestibulospinal tract neurones. Field potentials, unitary extracellular spikes and intracellular potentials were recorded during antidromic stimulation at C1 and C6 segments and during orthodromic stimulation through VIIIth nerve. The lateral and medial vestibulospinal tracts (LVST and MVST) were stimulated discriminately with the method developed in Appendix. On the basis of different axonal courses and conduction velocities, three major groups were distinguished for those cells which were activated monosynaptically by the primary vestibular afferents; 1. fast conducting LVST; 2. fast conducting MVST; and 3. slowly conducting MVST. Three other groups were discriminated for those cells which received only a polysynaptic or no action from primary vestibular afferents. These were; 4. fast conducting LVST; 5. slowly conducting LVST and 6. slowly conducting MVST. All of these six types of VST cells were represented within Deiters' nucleus. Only a relatively small number of MVST cells were found in the medial vestibular nucleus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 18 (1973), S. 446-463 
    ISSN: 1432-1106
    Keywords: Cerebellum ; Vestibular ; Spinocerebellar ; Purkinje ; Deiters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The organization of the cerebellar, vestibular and spinal inputs to the lateral and medial vestibulospinal tract (LVST and MVST) cells was studied in anaesthetized rabbits. Synaptic actions of these inputs were determined by recording postsynaptic potentials intracellularly and also unit spike discharges extracellularly from a number of LVST and MVST cells. As reported previously in cats, inhibition was evoked very frequently from the vermal cortex of the cerebellar anterior lobe and less frequently from that of the posterior lobe. However, no such inhibition was derived from the flocculus. The cerebellar inhibition was exerted upon both LVST and MVST cells, whether they received monosynaptic activation from the primary vestibular afferents (second-order) or not and whether they conducted impulses fast or slowly. However, the inhibition was frequently absent in “slow” “second-order” MVST cells. The vast majority of LVST and MVST cells received an excitatory input from the spinocerebellar afferents ascending the funiculus posterolateralis. This input was particularly prominent from the upper cervical cord. The spinal excitation thus obtained occurred in close connection with the cerebellar inhibition. Hence, it appears that the cerebellar vermis receives the spinal signals that drive LVST and MVST cells and in turn sends out inhibitory signals to adjust the reflex activity in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 8 (1969), S. 190-200 
    ISSN: 1432-1106
    Keywords: Vestibular ; EPSP ; IPSP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neurones in the descending, medial and superior vestibular nuclei of the cats were explored with intracellular microelectrodes. Cerebellar- and spinal-projecting neurones were identified by their antidromic invasion from the region of fastigial nuclei and from the second cervical segment, respectively, and the others by their location. The central actions of the primary vestibular impulses upon these non-Deiters vestibular nuclei neurones were investigated by using electric stimulation of the ipsilateral vestibular nerve. Many of these cells received excitatory postsynaptic potentials (EPSPs) monosynaptically, similar to those evoked in the ventral Deiters neurones, as described elsewhere, except that the unitary EPSPs are often larger. Some cells received only polysynaptic EPSPs or IPSPs and a few cells were not influenced at all.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1106
    Keywords: Axon reflex ; Deiters neurones ; Cerebellar afferents ; Cats
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary When recording intracellularly from cat's Deiters neurones, stimulation of the anterior lobe of the cerebellar cortex produced excitatory postsynaptic potentials (EPSPs) monosynaptically, in addition to the inhibitory ones (IPSPs) that were identified previously as being produced via Purkinje cell axons. The EPSPs were induced bilaterally from a wide area of the anterior and posterior lobes of the cerebellum, in contrast to the IPSPs that were evoked only ipsilaterally, mainly from the vermal cortex. The latency of the EPSPs was slightly, but significantly, shorter than that of the IPSPs. The presynaptic impulses responsible for these EPSPs were represented by the discrete field potentials and also by unit spikes of individual fibres. The pathway for these EPSPs and presynaptic impulses was pursued by testing their interference, in the manner of impulse collision and refractoriness, with those induced from various spots within or outside the cerebellum. It is found that the excitatory fibres for Deiters neurones extend transversely, and probably longitudinally too, over the culmen and pass out of the cerebellum through cerebellar peduncles. The major portion of them appears to originate from the medulla and a minority from the spinal cord. It is postulated that cerebellar afferents from these structures have synapses with Deiters neurones via their collateral branches, through which a kind of axon reflex occurs to Deiters neurones during stimulation of the cerebellar cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...