Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cl− conductance  (11)
  • Cystic fibrosis  (8)
  • Rat  (7)
Material
Keywords
  • 1
    ISSN: 1432-1440
    Keywords: Cystic fibrosis ; Cl- channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl- channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl- channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl- channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2013
    Keywords: Human sweat duct ; Cl− conductance ; Cl− channel blockers ; Cystic fibrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To characterize the chloride conductance of human sweat duct the effect of various analogues of diphenylamine-2-carboxylate was investigated on the transepithelial potential difference (PDT) and resistance (R T ) of isolated microperfused sweat ducts. Although the most powerful analogues which block Cl− channels in various secretory and absorptive epithelia were ineffective, a number of analogues (in particular Cl substituted ones) were found which at high concentrations significantly and reversibly increased PDT andR T . The data suggest that the main chloride conductance pathway of sweat duct epithelium resides in the cell membranes rather than in the tight junctions. In addition the different blocking spectra of the chloride conductances of sweat duct and tracheal epithelium (Welsh MJ, Science 232:1648, 1986) suggest that the combined impairment of both conductances in cystic fibrosis does not result from a molecular defect in the Cl− channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 357 (1975), S. 201-207 
    ISSN: 1432-2013
    Keywords: Allantoin ; Uricase ; Kidney ; Clearance ; Micropuncture ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Renal excretion of allantoin was measured by tracer techniques. After injection of 2-C14 urate and H3 inulin, clearances of allantoin and inulin were measured and both proximal and distal tubules were micropunctured. In confirmation of earlier results 2-C14 urate injected into an intact animal is very rapidly converted to C14 allantoin: after 15 min more than 90% of urinary tracer is present as allantoin. It was further observed that 1) allantoin clearance is essentially identical with inulin clearance over a wide range of urine flows; 2) no net transport of allantoin occurs in either proximal or distal tubules. Clearly allantoin is handled by the rat kidney like inulin. The total excretion of filtered allantoin unlike that of filtered urate provides an easy and effective mechanism for animals possessing the enzyme uricase to dispose of their purine loads.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 351 (1974), S. 323-330 
    ISSN: 1432-2013
    Keywords: Uricase ; Urate ; Allantoin ; Liver ; Kidney ; Microperfusion ; Rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. In vivo uricase activity was tested in rats by injection of 2-C14 urate and measurement of the total C14 activity and the fractional activities of allantoin, allantoic acid and urea in samples of blood and urine. In control animals, 5 min after the injection, 70% of the plasma tracer was already present in the form of allantoin. No allantoic acid and urea were produced. Intestinectomy had no measurable influence on uricase activity. On the other hand, hepatectomy or ligation of the hepatic artery combined with subtotal viscerectomy did abolish uricase activity almost completely. 2. Following microinjections into proximal tubules of Ringer solution containing 2-C14 urate, urine samples during early recovery mainly contained labelled urate, whereas in later samples the fraction of labelled allantoin increased. About 12 min after the microinjection the urine of both kidneys contained equal amounts of tracer mainly in the form of allantoin. 3. When segments of proximal tubules were perfused with an equilibrium solution containing tracer amounts of C 14 urate, no urate was metabolized during its passage through the proximal tubule. 4. C 14 urate was offered from the peritubular capillaries and samples of tubular fluid were analyzed, Again, all the tracer in the tubular fluid was in the form of urate, indicating that urate is not oxidized when it is transported across the tubular cell. It is concluded from these results that: 1. The rat kidney has no significant uricase activity. 2. Urate transport in the kidney is not influenced by this enzyme. 3. The degradation of urate to allantoin takes place at extrarenal sites, mainly in the liver.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 411 (1988), S. 546-553 
    ISSN: 1432-2013
    Keywords: Pancreas ; Isolated perfused ducts ; Luminal membrane ; Cl− conductance ; Cl−/HCO 3 − antiport ; cAMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The aim of the present study was to investigate by what transport mechanism does HCO 3 − cross the luminal membrane of pancreatic duct cells, and how do the cells respond to stimulation with dibytyryl cyclic AMP (db-cAMP). For this purpose a newly developed preparation of isolated and perfused intra-and interlobular ducts of rat pancreas was used. Responses of the epithelium to inhibitors and agonists were monitored by electrophysiological techniques. Addition of HCO 3 − /CO2 to the bath side of nonstimulated ducts depolarized the PD across the basolateral membrane (PDbl) by about 9mV, as also observed in a previous study [21]. This HCO 3 − effect was abolished by Cl− channel blockers or SITS infused into the lumen of the duct: i. e. 5-nitro-2-(3-phenylpropylamino)-benzoic acid (NPPB, 10−5 M) hyperpolarized PDbl by 8.2±1.6 mV (n=13); 3′,5-dichlorodiphenylamine-2-carboxylic acid (DCl-DPC, 10−5 M) hyperpolarized PDbl by 10.3±1.7 mV (n=10); and SITS hyperpolarized PDbl by 7.8±0.9 mV (n=4). Stimulation of the ducts with dbcAMP in the presence of bath HCO 3 − /CO2 resulted in depolarization of PDbl, the ductal lumen became more negative and the fractional resistance of the luminal membrane decreased. Together with forskolin (10−6 M), db-cAMP (10−4 M) caused a fast depolarization of PDbl by 33.8±2.5 mV (n=6). When db-cAMP (5×10−4 M) was given alone in the presence of bath HCO 3 − /CO2, PDbl depolarized by 25.3±4.2 mV (n=10). In the absence of exogenous HCO 3 − , db-cAMP also depolarized PDbl by 24.7±3.0 mV (n=10). The present data suggest that in the luminal membrane of pancreatic duct cells there is a Cl− conductance in parallel with a Cl−/HCO 3 − antiport. Dibutyryl cyclic AMP increases the Cl− conductance of the luminal membrane. Taking together our present results, and the recent data obtained for the basolateral membrane [21], a tentative model for pancreatic HCO 3 − transport is proposed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2013
    Keywords: Key wordsN-Acetyl-L-cysteine ; S-Carboxymethyl-L-cysteine ; Respiratory epithelial cells ; Cystic fibrosis ; CFTR ; Cl ; conductance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract N-Acetyl-L-cysteine (NAC) is a widely used mucolytic drug in patients with a variety of respiratory disorders including cystic fibrosis (CF). The beneficial effects of NAC are empirical and the exact mechanism of action in the airways remains obscure. In the present study we examined the effects on whole-cell (wc) conductance (G m) and voltage (V m) of NAC and the congeners S-carboxymethyl-L-cysteine (CMC) and S-carbamyl-L-cysteine (CAC) and L-cysteine in normal and CF airway epithelial cells. L-Cysteine (1 mmol/l) had no detectable effect. The increase in G m (ΔG m) by the other compounds was concentration dependent and was (all substances at 1 mmol/l) 3.8 ± 1.4 nS (NAC; n = 11), 4.2 ± 1.0 nS (CMC; n = 16) and 3.8 ± 1.6 nS (CAC; n = 18), respectively. The changes in G m were paralleled by an increased depolarization (ΔV m) when extracellular Cl− concentration was reduced to 34 mmol/l: under control conditions = −4.1 ± 2.1 versus 10.2 ± 2.1 mV in the presence of NAC, CMC, CAC (n = 36). In the presence of NAC, CMC and CAC, the reduction in Cl− concentration was paralleled by a reduction of G m by 2.1 ± 0.4 nS (n = 35), indicating that all substances acted by increasing the Cl− conductance. Analysis of intracellular pH did not reveal any changes by any of the compounds (1 mmol/l). A Cl− conductance was also activated in HT29 colonic carcinoma and CF tracheal epithelial (CFDE) cells but not in CFPAC-1 cells, which do not express detectable levels of ΔF508-CFTR, suggesting that the presence of CFTR may be a prerequisite for the induction of Cl− currents. Next we examined the ion currents in Xenopus oocytes microinjected with CFTR-cRNA. Water-injected oocytes did not respond to activation by forskolin and 3-isobutyl-1-methylxanthine (IBMX) (ΔG m = 0.08 ± 0.04 μS; n = 10) and no current was activated when these oocytes were exposed to NAC or CMC. In contrast, in CFTR-cRNA-injected oocytes G m was enhanced when intracellular adenosine 3′,5′-cyclic monophosphate (cAMP) was increased by forskolin and IBMX (G m = 4.5 ± 1.3 μS; n = 8). G m was significantly increased by 0.74 ± 0.2 μS (n = 11) and 0.46 ± 0.1 μS (n = 10) when oocytes were exposed to NAC and CMC, respectively (both 1 mmol/l). In conclusion, NAC and its congeners activate Cl− conductances in normal and CF airway epithelial cells and hence induce electrolyte secretion which may be beneficial in CF patients. CFTR appears to be required for this response in an as yet unknown fashion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 421 (1992), S. 224-229 
    ISSN: 1432-2013
    Keywords: Cl− conductance ; HT29 ; P2 receptor ; Colon ; Cl− secretion ; cAMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The colonic carcinoma cell line HT29 was used to examine the influence of agonists increasing cytosolic cAMP and Ca2+ activity on the conductances and the cell membrane voltage (V m). HT29 cells were grown on glass cover-slips. Cells were impaled by microelectrodes 4–10 days after seeding, when they had formed large plaques. In 181 impalements V m was −51±1 mV. An increase in bath K+ concentration from 3.6 mmol/l to 18.6 mmol/l or 0.5 mmol/l Ba2+ depolarized the cells by 10±1 mV (n=49) or by 9±2 mV (n=3), respectively. A decrease of bath Cl− concentration from 145 to 30 mmol/l depolarized the cells by 11±1 mV (n=24). Agents increasing intracellular cAMP such as isobutylmethylxanthine (0.1 mmol/l), forskolin (10 μmol/l) or isoprenaline (10 μmol/l) depolarized the cells by 6±1 (n=13), 15±3 (n=5) and 6±2 (n=3) mV, respectively. In hypoosmolar solutions (225 mosmol/l) cells depolarized by 9±1 mV (n=6). Purine and pyrimidine nucleotides depolarized the cells dose-dependently with the following potency sequence: UTP 〉 ATP 〉 ITP 〉 GTP 〉 TIP 〉 CTP = 0. The depolarization by ATP was stronger than that by ADP and adenosine. The muscarinic agonist carbachol led to a sustained depolarization by 27±6 mV (n=5) at 0.1 mmol/l, and to a transient depolarization by 12±4 mV (n=5) at 10 μmol/l. Neurotensin depolarized with a half-maximal effect at around 5 nmol/l. The depolarization induced by nucleotides and neurotensin was transient and followed by a hyperpolarization. We confirm that HT29 cells possess Cl−- and K+-conductive pathways. The Cl− conductance is regulated by intracellular cAMP level, cytosolic Ca2+ activity, and cell swelling. The K+ conductance in HT29 cells is regulated by intracellular Ca2+ activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 424 (1993), S. 456-464 
    ISSN: 1432-2013
    Keywords: Cl− channels ; Cl− secretion ; HT29 ; Ca2+ ; cAMP ; Protein kinase A ; Cytosolic inhibitor ; Cystic fibrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recently, it has been shown that intermediate conductance outwardly rectifying chloride channels (ICOR) are blocked by cytosolic inhibitor (C. I.) found in the cytosol of human placenta and epithelial cells. C. I. also reduced the baseline current in excised membrane patches of HT29 cells. In the present study, this effect of C. I. was characterized further. Heat treated human placental cytosol was extracted in organic solvents and dissolved in different electrolyte solutions. It is shown that the reduction of baseline conductance (g o) is caused by inhibition of small non-resolvable channels, which are impermeable to Na+ and SO4 2−, but permeable to Cl−. The regulation of these small Cl−-conducting channels (g o) and of ICOR was examined further. First, no activating effects of protein kinase A (PKA) on the open probability (P o) of the ICOR or on the go) were observed. The Po of the ICOR was reduced by 22% in a Ca2+-free solution. g o was insensitive to changes in the Ca2+ activity. The effects of C. I. from a cystic fibrosis (CF) placenta and the CF pancreatic duct cell line CFPAC-1 were compared with the effects of corresponding control cytosols, and no significant differences between CF and control cytosols were found. We conclude that the excised patches of HT29 cells contain ICOR and small non-resolvable Cl−-conducting channels which are similarly inhibited by C. I. Apart from a weak effect of Ca2+ on the ICOR, g o and the ICOR do not seem to be directly controlled by Ca2+ or PKA. C. I. of normal and CF epithelia have a similar inhibitory potency on Cl− channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2013
    Keywords: Key words Cl ; channel ; K+ channel ; Cellular homeostasis ; Cystic fibrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Cystic fibrosis transmembrane conductance regulator (CFTR) functions as a Cl–channel in a large variety of cells expressing this protein. Recently evidence has accumulated that it also regulates other ion channels. A coordinated increase in Cl–and K+ conductances is necessary in many Cl–-secreting epithelia. This has, for example, recently been demonstrated for the colonic crypt, for which a new type of K+ channel and a specific inhibitor of this channel, the chromanol 293B, have been described. In the present study we have examined whether the cAMP-evoked activation of CFTR, overexpressed in Xenopus oocytes, in addition to its known activation of a Cl–conductance, also upregulates endogenous K+ channels. It is shown that CFTR-cRNA-injected but not water-injected oocytes possess a cAMP-activated Cl–conductance. Of the cAMP-induced whole-cell current increase, 15–25% was due to a 293B-, Ba2+and TEA+-inhibitable K+ conductance. The cRNA of the mutated CFTR (ΔF508 CFTR) had no such effect. We conclude that cAMP activated CFTR and an endogenous IsK-type and 293B-sensitive K+ conductance. Similar events, occurring, for example, in the colonic crypt possessing CFTR and 293B-sensitive K+ channels, might explain the coordinated cAMP-mediated increase in Cl–and K+ conductances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Pflügers Archiv 429 (1995), S. 682-690 
    ISSN: 1432-2013
    Keywords: Cl− conductance ; K+ conductance ; Brefeldin A ; Cytochalasin D ; Epithelial cells ; Actin ; Microtubules
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Activation of Cl− and K+ channels is necessary to drive ion secretion in epithelia. There is substantial evidence from previous reports that vesicular transport and exocytosis are involved in the regulation of ion channels. In the present study we examined the role of cytoskeletal elements and components of intracellular vesicle transport on ion channel activation in bronchial epithelial cells. To this end, cells were incubated with a number of different compounds which interact with either microtubules or actin microfilaments, or which interfere with vesicle transport in the Golgi apparatus. The effectiveness of these agents was verified by fluorescence staining of cellular microtubules and actin. The function was examined in 36Cl− efflux studies as well as in whole-cell (WC) patch-clamp and cell-attached studies. The cells were studied under control conditions and after exposure to (in mmol/l) ATP (0.1), forskolin (0.01), histamine (0.01) and hypotonic bath solution (HBS, NaCl 72.5). In untreated control cells, ATP primarily activated a K+ conductance whilst histamine and forskolin induced mainly a Cl− conductance. HBS activated both K+ and Cl− conductances. Incubation of the cells with brefeldin A (up to 100 μmol/l) did not inhibit WC current activation and 36Cl− efflux. Nocodazole (up to 170 μmol/l) reduced the ATP-induced WC current, and mevastatin (up to 100 μmol/l) the cell-swelling-induced WC current. Neither had any effect on the WC current induced by forskolin and histamine. Also 36Cl− efflux induced by HBS, ATP, forskolin and histamine was unaltered by these compounds. Similarly, colchicine (10 μmol/l) and taxol (6 μmol/l) affected neither 36Cl− efflux nor WC current induced by ATP, forskolin, histamine or HBS. In contrast, depolymerisation of actin by cytochalasin D (10 μmol/l) significantly attenuated 36Cl− effluxes and WC current activation by the above-mentioned agonists. Incubation with a C2 clostridial toxin (5 nmol/l) showed similar effects on WC currents. Moreover, when cytochalasin D (10 μmol/l), C2 clostridial toxins (5 nmol/l), or phalloidin (10 μmol/l) were added to the pipette filling solution current activation was markedly reduced. However, in excised inside-out membrane patches, cytochalasin D (10 μmol/l), G-actin (10 μmol/l) and phalloidin (10 μmol/l) had no effect. These data suggest that actin participates in the activation of ion channels in 16HBE14o- epithelial cells and support the concept that exocytosis is a crucial step in the regulation of Cl− and K+ channels in these cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...