Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Computational Chemistry and Molecular Modeling  (5)
  • amino acid sequence  (3)
  • 1
    ISSN: 1573-4943
    Keywords: Trypsin inhibitor ; Kunitz-type inhibitor ; amino acid sequence ; winged bean ; Psophocarpus tetragonolobus (L.) DC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The primary sequence of trypsin inhibitor-2 (WBTI-2) fromPsophocarpus tetragonolobus (L.) DC seeds was determined. This inhibitor consists of a single polypeptide chain of 182 amino acids, including four half-cystine residues, and an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2 showed 57% identity to the basic trypsin inhibitor (WBTI-3) and 50% identity to the chymotrypsin inhibitor (WBCI) of winged bean, and 54% identity to the trypsin inhibitor DE-3 fromErythrina latissima seed. The similarity to the soybean Kunitz trypsin inhibitor (40%) and the other Kunitz-type inhibitors fromAdenanthera pavonina (30%) and wheat (26%) was much lower. Sequence comparisons indicate that thePsophocarpus andErythrina inhibitors are more closely related to each other than to other members of the Kunitz inhibitor family.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4943
    Keywords: Trypsin inhibitor ; Kunitz-type seed inhibitor ; amino acid sequence ; sequence similarity ; Leguminosae ; winged bean ; Psophocarpus tetragonolobus (L.) DC
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The primary structure of acidic trypsin inhibitor-2a (WBTI-2a,pI 5.9) fromPsophocarpus tetragonolobus (L.) DC seed was determined. This inhibitor consists of a single polypeptide chain of 180 amino acids including four half-cystine residues and has an N-terminal residue of pyroglutamic acid. The sequence of WBTI-2a,pI 5.9, showed 84% identity to acidic trypsin inhibitor-2 (WBTI-2,pI 5.1) but only 57% identity to the basic trypsin inhibitor (WBTI-1,pI 8.9) and 50% identity to the chymotrypsin inhibitor of winged bean. The data indicate that winged bean seed contains a family of three Kunitz-type inhibitors which have about 50% identity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: amino acid sequence ; pea seed albumin ; internally repeated sequences
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Pea albumin 2 (PA2:Mr≈26000) is a major component of the albumin fraction derived from aqueous salt extracts of pea seed. Sodium dodecylsulfate-polyacrylamide gel electrophoresis and chromatography on DEAE-Sephacel resolve PA2 into two closely related components (PA2a and PA2b). A cDNA clone coding for one of these components has been sequenced and the deduced amino acid sequence compared with partial, chemically-determined sequences for cyanogen bromide peptides from both PA2 components. Complete amino acid sequences were obtained for the C-terminal peptides. The PA2 molecule of 230 amino acids contains four imperfect repeat sequences each of approximately 57 amino acids in length. The combined sequence data, together with a comparison of PA2-related polypeptides produced in vitro and in vivo, indicate that PA2 is synthesized without a signal sequence and does not undergo significant post-translational modification. Although both forms of PA2 contain Asn-X-Thr consensus sequences, neither form is glycosylated. Accumulation of PA2 contributes approximately 11% of the sulfur-amino acids in pea seeds (cysteine plus methionine equals 2.6 residues percent). Suppression of levels of PA2 polypeptides and their mRNAs in developing seeds of sulfur-deficient plants is less marked than that for legumin, in spite of the lower content of sulfur-amino acids in legumin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 44 (1992), S. 807-829 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A recently proposed extension of the MNDO formalism to d orbitals has been parameterized for the halogens CI, Br, and I. Extensive test calculations indicate slight consistent improvements for normalvalent molecules and dramatic improvements for hypervalent molecules, in comparison with established MNDO-type methods without d orbitals. The mean absolute errors in calculated heats of formation are 3.9 kcal/mol for 155 normalvalent compounds and 2.8 kcal/mol for 23 hypervalent compounds. The predicted structures of the hypervalent molecules are qualitatively correct, with a mean absolute error of 2° in 19 bond angles.
    Additional Material: 7 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 34 (1988), S. 103-118 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A formalism for a computational treatment of the polarization of a solvent and polar solutes immersed in it is presented. The solvent is modeled as a continuum dielectric. Polarization effects are represented by a polarization charge density at the dielectric boundaries and by induced dipoles at the polarizable atoms. Applications of this formalism with nonpolarizable atoms have led to excellent agreement between the calculated and experimental hydration enthalpies of a variety of polar molecules. A problem of the choice of the charge distribution of the solute is addressed in calculations of the solution dipole moment and hydration enthalpy of polarizable molecule of water in solution. Experimental values of these properties were well reproduced in calculations starting with point charges fitted to the vacuum dipole moment of the water molecule. Tests calculations for spherical models and for a 13-residue peptide show good convergence of the computational method. It is shown in calculations on simplified models that a change in the exposure of a charged side chain can lead to large changes in the potential inside protein measured at a fixed distance from the charge and at the same depth from the protein surface. Calculations performed for the C-peptide of the ribonuclease suggest that the differential screening of partial charges can reverse the sign of the vacuum potential of the helix dipole.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article is a first step in an attempt to reevaluate the relative role of different contributions to the energetics of DNA in salt solutions. To identify individual terms yielding such contributions a new derivation is given of the generalized Poisson-Boltzmann equation, which includes correlation effects, and explicitly shows terms ignored in the regular Poisson-Boltzmann approach. A general method based on the Boundary Element Technique is discussed, which can be used to evaluate these terms in the next steps of the reevaluation. An implementation of this method for the solution of the nonlinear Poisson-Boltzmann equation is described in detail, and is used to compute the ionic atmosphere around DNAs modeled as cylinders with helical distributions of charges. In the B-type DNA models, it is found that the ion densities in the minor and major grooves near the DNA surface differ by up to threefold. This difference is ca. 10-fold for Z-type DNA models. There are 20-25% differences in the magnitude of the maximum ionic charge density between DNA models of the same type. The addition of excess salt (up to 0.15 M) changes this maximum by only 10-15%. This change is not proportional to the concentration of excess salt. The contributions of different factors to the stabilization of alternative forms of DNA are evaluated. These factors are: (1) interactions between the phosphates, (2) interactions of phosphates with water, (3) interactions of phosphates with the ionic cloud, (4) interactions within the ionic cloud, (5) entropy of the ionic cloud. It is found that regardless of large variations in the counterion distributions around different DNAs, energetic contributions from these distributions are similar (-12.65 ± 0.6 kcal/mol · cell). The calculated change in stabilization per unit cell of models of B and Z-type DNAs due to 0.15 M excess NaCl is only -0.56 ± 0.02 kcal/mol, indicating no tendency toward B-Z transition in this concentration range. Significantly larger variations of the order of 10 kcal/mol per unit cell can result from factors 1-2. Possible effects of the realistic DNA-solvent boundaries on the energetics of DNA solutions are discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1459-1467 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: This article presents a new method for topological analysis of molecular surfaces. Explicit representation of the van der Waals interaction according to the Lennard-Jones potential enabled determination of the function of the maximum radius of a hypothetical atomic probe in any location, r, inside the host's domain. The size of the spatial gradient of the maximal probe's volume (named the ξ value) at that location was found to be a good descriptor of the local shape of the host. Consequently, mapping of the host domain according to the ξ value could be used as a quantitative tool for localization of potent local binding sites. The proposed method is illustrated by mapping an organic host (calix[4]arene) as well as an enzyme (HIV-aspartic protease). Analysis of the calix[4]arene derivative revealed that the proposed method reproduces immediately the known binding site of conic calix[4]arenes. The second test case demonstrated how the catalytic site of the enzyme could be disassembled into many local binding sites. Some of these sites, located according to the proposed method, were found to follow the shape of a known inhibitor of the enzyme in a complementary manner. © 1995 John Wiley & Sons, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 15 (1994), S. 1393-1402 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In this article we represent the development of an artificial-intelligence-based method for the automatic design of valid chemical structures (AISD). The key feature of the proposed algorithm is its ability to mimic many decision-making processes carried by the human drug designer during a design session. The manual drug-design process is analyzed and transformed into a computerized form by associating a weight factor with each term. These weights enable the translation of the drug designer's intution into probabilities that control the flow of the design process. The input required to initiate a design session might be as minimal as the geometry of a previously existed pharmacophoric model, up to the three-dimensional geometry of the host receptor. A design application is demonstrated by the implementation of the proposed algorithm for the design of new potent sweeteners. © 1994 by John Wiley & Sons, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...