Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cutaneous mechanoreceptors  (9)
  • Nociception  (5)
  • Inflammation  (4)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 27 (1977), S. 459-477 
    ISSN: 1432-1106
    Keywords: Unanesthetized cat ; Cerebellum ; Mossy fiber input ; Climbing fiber input ; Cutaneous mechanoreceptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Mossy and climbing fiber inputs from cutaneous mechanoreceptors to Purkyně cells of vermis and pars intermedia of the cerebellar anterior lobe were studied in locally anesthetized, paralyzed cats prepared for painless recording sessions. In this preparation the mossy fiber and climbing fiber pathways remain fully functional. Simple spikes and climbing fiber discharges were recorded simultaneously through extracellular glass micro-electrodes and thereafter filtered off from each other for separate, computer-assisted analysis. Controlled mechanical stimulation (air jets, taps, pressure) was performed on the foot pads of all four limbs and on the hairy skin of the limbs and the body. 2. Long term recording of the spontaneous activity of 110 Purkyně cells revealed a simple spike activity of 85 imp./s ± 49 imp./s (mean ± S.D.) and 1.00 ± 0.78 climbing fiber responses per second. 3. Taps to foot pads and air jets to hairy skin revealed that most of the short latency responses via mossy fibers resulted from activation of the receptors of the ipsilateral forefoot. With the same stimuli climbing fiber discharges from the ipsilateral feet were more frequently evoked than from the contralateral feet. Both via mossy and climbing fibers the contralateral hindlimb gave the smallest contribution. 4. Simple spike responses were evoked more commonly by pad stimulation (tap stimuli) than by hair stimulation (air jets). For both types of stimuli excitatory responses were more frequent (3 ∶ 1) than inhibitory ones. Similarly, pad stimulation was more effective than hair stimulation in inducing climbing fiber responses. Ipsilateral stimuli were much more effective than contralateral ones in evoking both simple spike and climbing fiber responses. 5. Steady pressure stimuli modify the Purkyně cell discharges via mossy and climbing fiber pathways. Excitatory and inhibitory effects often of very long duration have been observed via both pathways. Again the ipsilateral forelimb was more effective than the other limbs. Mossy fiber responses were at least three times as common as climbing fiber responses and excitatory responses were more frequent than inhibitory ones. 6. There is no apparent relation between the spontaneous discharge rates of the Purkyně cells and the response magnitudes of the mossy fiber and climbing fiber induced excitatory and inhibitory changes in the impulse pattern of Purkyně cells during steady pressure stimuli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 27 (1977), S. 319-333 
    ISSN: 1432-1106
    Keywords: Unanesthetized cat ; Cerebellum ; Purkyně cells ; Mossy fiber fields ; Climbing fiber fields ; Cutaneous mechanoreceptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. In cats with local anaesthesia the cutaneous receptive fields of individual Purkyně cells of the vermis and pars intermedia of the anterior lobe were assessed by recording the simple spike discharges and climbing fiber responses following controlled mechanical stimulation of the foot pads of all four limbs (taps and pressure stimuli) and of the hairy skin (air jets) of the limbs and the body. 2. Exploring the receptive fields with taps and air jets revealed for the mossy fiber transmitted activity that in a population of 93 cells 37 had small receptive fields from the distal areas of one limb only; 28 had discontinuous receptive fields in two limbs and the others had their receptive fields on three or four limbs (multiple discontinuous fields) or over all or almost all of the body surface (widespread fields). 3. Testing with pressure stimuli to the toe pads inside and outside the receptive fields outlined with taps and air jets led to modifications of the simple spike discharges in 86 of 90 cells investigated in this way. Inclusion of these pressure fields increases the percentage of cells with discontinuous multiple mossy fiber transmitted receptive fields on three or four limbs to nearly 70% of our sample of Purkyně cells. 4. Approximately 50% of the cells with mossy fiber transmitted receptive fields also had climbing fiber transmitted fields. With the climbing fiber input the receptive fields were comparable with those for mossy fiber inputs when exploring with taps or air jets. Some additional climbing fiber transmitted cutaneous receptive fields were found with pressure stimuli. These pressure fields were usually restricted to one or two limbs. 5. These findings imply that the mossy fiber transmitted receptive fields of a given Purkyně cell usually extended over a wider area than the climbing fiber transmitted fields. As a rule the (small) climbing fiber fields were overlapped more or less completely by the (large) mossy fiber fields. 6. The receptive fields were either purely excitatory or partly excitatory and partly inhibitory. Pure inhibitory fields were rare. Within a mixed field no dominant pattern has been detected in regard to the arrangement of the excitatory and inhibitory areas. With the multiple fields from three or four limbs, receptive fields of complex composition seem to be the rule rather than the exception. It appears that in samples of cells like the present, each one has its own individuality in regard to shape and extent and in the intermingling of the excitatory and inhibitory field areas from mossy and climbing fiber inputs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 175 (1987), S. 289-301 
    ISSN: 1432-0568
    Keywords: Dura mater encephali ; Sensory receptors ; Nerve fibres ; Vascular bed ; Lymphatic vessel ; Nociception ; Headache
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The dura mater encephali of the rat is richly supplied by myelinated (A-axons) and unmyelinated (C-axons) nerve fibres. For the supratentorial part the main nerve supply stems from all three branches of the trigeminal nerve. Finally, 250 myelinated and 800 unmyelinated nerve fibres innervate one side of the supratentorial part. The vascular bed of the dura mater exhibits long postcapillary venules up to 200 μm in length with segments of endothelial fenestration. Lymphatic vessels occur within the dura mater. They leave the cranial cavity through the openings of the cribriform plate, rostral to the bulla tympani together with the transverse sinus, and the middle meningeal artery. The perineural sheath builds up a tube-like net containing the A- and C-axons. It is spacious in the parietal dura mater and dense at the sagittal sinus along its extension from rostral to caudal and at the confluence of sinuses. Terminals of both the A- and C-axons are of the unencapsulated type. Unencapsulated Ruffini-like receptors stemming from A-axons are found in the dural connective tissue at sites where superficial cerebral veins enter the sagittal sinus and at the confluence of sinuses. The terminations of single A-axons together with C-fibre bundles mix up in their final course in one Schwann cell to build up multiaxonal units or terminations (up to 15 axonal profiles). A morphological differentiation is made due to the topography of these terminations; firstly, in different segments of the vascular bed: postcapillary venule, venule, the sinus wall, lymphatic vessel wall, and secondly, within the dura mater: inner periosteal layer, collagenous fibre bundles of the meningeal layer and at the mesothelial cell layer of the subdural space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Annals of hematology 76 (1998), S. 231-248 
    ISSN: 1432-0584
    Keywords: Key words Allergy ; Autoimmunity ; FcγR ; IgG ; Inflammation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. IgG immune complexes are of central importance in the humoral immune system and strongly implicated in the pathogenesis of hematologic and rheumatic autoimmune disorders. Cross-linking of receptors for the Fc domain of IgG antibodies (FcγRs) triggers a wide variety of effector functions including phagocytosis, antibody-dependent cellular cytotoxicity, and release of inflammatory mediators, as well as immune complex clearance and regulation of antibody production. In this way, FcγR provide an essential feedback between the humoral and cellular immune response. In the past, significant advances have been made in the molecular dissection of FcγR function using cellular transfection systems. Current approaches designed to target and change individual FcγR genes in mice have given further insight into their specific contributions to systemic processes, also indicating them to be important immunoregulatory receptors involved in various disease states of allergy, autoimmunity, and inflammation. Future work on targeting FcγR binding sites in combination with humanized FcγR mouse models will lead to novel therapeutic strategies in the treatment of IgG-mediated human disease in which FcγR activation plays an integral part.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1106
    Keywords: [K+]0 Spinal cord ; Posterior articular nerve ; Knee joint ; Inflammation ; Pain ; Arthritis ; Nociception ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In 20 cats anaesthetized with alpha-chloralose and spinalized at the thoracolumbar junction we investigated the role of stimulation induced accumulation of extracellular potassium in the spinal cord in the processing of nociceptive discharges from the knee joint. For that we electrically stimulated the posterior articular nerve of the knee. We further performed innocuous and noxious stimulation of the knee and of other parts of the leg and studied the effect of an acute inflammation of the knee on [K+]0 in the spinal cord. Innocuous stimulation of the skin (brushing or touching) and innocuous movements in the knee joint all induced rises in [K+]0 which were maximal at recording depths of 1500 to 2200 μm below the surface of the cord dorsum. Peak increases were 0.4 mM for touching the leg and 1.7 mM during rhythmic flexion/ extension of the knee joint. Noxious stimulation of the skin, the paw, the tendon and noxious movements of the knee joint also produced rises in [K+]0, which were somewhat larger for the individual types of stimuli than those produced by innocuous intensities. Electrical stimulation of the posterior articular nerve induced rises in [K+]0 by up to 0.6 mM. Stimulus intensities sufficient to activate unmyelinated group IV fibers were only slightly effective in raising [K+]0 above the levels reached during stimulation of myelinated group II and III fibers. During development of an acute inflammation of the knee joint (induced by kaolin and carrageenan), increases in [K+]0 and associated field potentials became larger by about 25%. We assume that this reflects an increase in neuronal responses. In conclusion, changes in [K+]0 in the spinal cord are some-what larger during noxious stimulation than during innocuous stimulation. The absolute level reached depended more on the site and type of stimulation than on the actual stimulus intensity itself. Hence a critical role of spinal K+ accumulation for nociception is unlikely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Pain ; Inflammation ; Descending inhibition ; Nociception ; Spinal cord ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In ten cats, single unit electrical activity was recorded in the lumbosacral spinal cord from neurones driven by stimulation of afferent fibres from the ipsilateral knee joint. Tonic descending inhibition (TDI) on the responses of these cells was measured as increases in resting and evoked activity of the neurones following reversible spinalization of the animals with a cold block at upper lumbar level. Acute inflammation of the knee joint was induced in five of the cats by the injection of kaolin and carrageenan into the joint. TDI was observed in 25 of 33 neurones recorded in normal animals (76%) and in 36 of 40 (90%) neurones recorded in animals with acute knee joint inflammation. In both kinds of preparation TDI was more pronounced in neurones recorded in the deep dorsal horn and in the ventral horn than in those recorded in the superficial dorsal horn. There was a tendency in the whole sample for TDI to be greater in neurones with input from inflamed knees. We conclude that the spinal processing of afferent information from joints is under tonic descending influences and that the amount of TDI can be altered during acute arthritis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Joint ; Pain ; Inflammation ; Spinal cord ; Ascending tracts ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Recordings were made from 16 ascending tract cells in the spinal cords of anaesthetized, spinalized cats before and after an acute arthritis was produced by injection of kaolin and carrageenan into the knee joint. 2. The responses tested routinely were to passive flexion of the knee, an innocuous movement. In some cases, responses to other movements were also tested, and changes in background discharge rates were monitored. 3. Control recordings for a period of 1 h or in 3 cases of 3 h indicated that the responses to flexion were reasonably stationary. 4. Four tract cells that initially showed little or no response to flexion of the knee joint developed large responses within 1 to 2 h after inflammation of the joint. 5. Another 9 cells were tested that had responses to flexion of the knee joint prior to inflammation. In 6 cases, inflammation produced enhanced static or transient responses. In 2 cases, the effect of flexion was initially inhibitory or variable, but after inflammation these cells showed large excitatory responses. In the other case, inflammation had no effect. Background discharges were increased by inflammation in 6 of these 9 cells. 6. The effect of inflammation of the knee joint was tested on 3 tract cells that had no clearly defined receptive field in the knee. In 1 case, a response developed to knee flexion after acute inflammation was produced. In the other 2 cases, there were initially responses to knee flexion, but these were unchanged by inflammation. 7. Two of the cells tested had bilateral receptive fields in or around the knee joints. Inflammation of one knee joint enhanced the responses to flexion of the same but not of the contralateral knee in one case but greatly increased the responses to flexion of both knees in the other case. 8. Injections of prostaglandin (PGE2) caused an enhancement of the responses to knee flexion beyond that caused by inflammation in 5 of 7 cases. One cell whose responses to flexion of the knee were unaffected by inflammation showed inhibitory responses to prostaglandin injections into the inflamed knee joint. 9. The effects of inflammation on the responses of ascending tract cells of the spinal cord appear to serve as a useful neural model of the events responsible for the development of arthritic pain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 79 (1990), S. 97-102 
    ISSN: 1432-1106
    Keywords: Sensory gating ; Finger movement ; Cutaneous mechanoreceptors ; Microneurography ; Intraneural microstimulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Intraneural microstimulation within the median nerve of alert healthy subjects was used to evoke tactile sensations at threshold for conscious detection. The effect of movement on these sensations was studied by asking the subjects to estimate their magnitude before, during and after movement of the appropriate finger at different speeds. It was found that sensations of flutter and pressure were both attenuated by movement, as was the magnitude of spontaneous paraesthesiae. The degree of sensory inhibition correlated positively with speed of movement and was comparable to the previously reported reduction in cortical somatosensory evoked potentials by movement, using suprathreshold stimuli. These results indicate that (i) movement inhibits tactile sensations of different qualities, (ii) such inhibition is velocity-dependent, and (iii) threshold sensations are amenable to central modulation short of their abolition. It is likely that the mechanisms of inhibition of exteroceptive inputs during movement are contingent upon the character of the sensory stimulus and the nature of the motor task.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 79 (1990), S. 103-108 
    ISSN: 1432-1106
    Keywords: Finger movement ; Sensory gating ; Cutaneous mechanoreceptors ; Local anaesthesia ; Intraneural microstimulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Tactile sensations of flutter or pressure were evoked in alert human subjects by intraneural microstimulation in the median nerve. Ratings were obtained of the magnitude of sensations at threshold for conscious detection during movement of the finger to which they were projected, of neighbouring fingers or of the opposite hand. Results showed that inhibition of flutter sensation was maximal in the moved finger (48%), with a weaker graded effect from adjacent (23%) to distant (19%) fingers of the same hand. Sensations of pressure were more markedly suppressed but the gradients were similar. Movement of the opposite hand and isometric contraction of the forearm muscles had little effect. Local anaesthetic blocks of the median and other upper limb nerves counteracted most of the inhibitory effect of movement on cutaneous flutter sensation. We conclude that sensory gating is largely restricted to the moved digits, that it applies to submodalities of both flutter and pressure and that sensory gating is mostly mediated by cutaneous receptor input from the hand.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 92 (1993), S. 391-398 
    ISSN: 1432-1106
    Keywords: Joint afferents ; Nociception ; Transduction ; Phorbol esters ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of β -phorbol 12, 13-dibutyrate (PDBu) on the discharge properties of slowly conducting knee joint afferents (group III and group IV fibers) were studied to determine the role of protein kinase C in nociception. Extracellular single unit recordings were made from small filaments dissected from the medial articular nerve in cats anesthetized with alphachloralose. PDBu was applied intra-arterially close to the joint in concentrations of 10-6 up to 10-4 M. The afferents were classified as low-threshold and high-threshold units with regard to their sensitivity to passive noxious and innocuous movements of the knee joint. Following PDBu application, an excitation occurred in 28% of the group III and in 40% of the group IV fibers. An enhancement of responses to passive movements of the joint (sensitization) occurred in 37% of group III and 19% of group IV afferents. In summary, 37.5% of the low-threshold and 50% of the high-threshold fibers proved to be sensitive to PDBu. Most of the PDBu-positive units responded also to bradykinin, whereas only a few PDBu-positive units were sensitive to prostaglandin I2 and E2. We conclude from these results that, in a distinct population of slowly conducting joint afferents, protein kinase C is likely to be involved in the process of transduction. Thus, pain and hyperalgesia may be mediated at least partly by intracellular mechanisms that are linked to protein kinase C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...