Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Biomembranes 729 (1983), S. 28-34 
    ISSN: 0005-2736
    Keywords: Fluorescence ; Liposome ; Peptide-lipid interaction ; Peptide-peptide interaction ; Phase transition
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biophysical Chemistry 34 (1989), S. 35-42 
    ISSN: 0301-4622
    Keywords: Hydrolytic reaction ; Liposome ; Membrane fluidity ; Polypeptide catalyst ; Substrate selectivity
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biophysical Chemistry 34 (1989), S. 43-53 
    ISSN: 0301-4622
    Keywords: Carboxyfluorescein leakage ; Fourier transform infrared spectroscopy ; Liposome ; Membrane fluidity ; Teleocidi ; Tetradecanoylphorbol 13-acetate, 12-O-
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0014-5793
    Keywords: Cu, Zn-superoxide dismutase ; Immunoassay ; Monoclonal antibody
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/General Subjects 799 (1984), S. 252-259 
    ISSN: 0304-4165
    Keywords: Enolase ; Immunoassay ; Monoclonal antibody
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2048
    Keywords: Cell wall ; Cellulose microfibril ; Chaetomorpha ; Cytoskeleton ; Microtubule ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The functions of the microtubule (MT) cytoskeleton in changing the orientation of microfibrils (MFs) in the cell walls of the coenocytic green alga Chaetomorpha moniligera Kjellman were investigated by electron microscopy. The cortical MT cytoskeleton in Chaetomorpha was comprised of longitudinally oriented MTs. Cellulose MFs, however, alternately changed their orientation longitudinally and transversely to form crisscross MF textures. Microtubules were parallel to longitudinally oriented MFs but never to those that were transversely oriented. The average density of MTs during the formation of longitudinally oriented MFs was 216 per 50 μm of wall and that of transversely oriented MFs 170/50 μm. To determine exactly the MT-density dependency of each MF orientation, changes in MF orientation were examined by changing MT density after treating and removing amiprophos-methyl (APM). Microtubules were reduced in number by a half (100/50 μm) after 2 h and by 3/4 (50/50 μm) after 3 h of treatment with APM (3 mM). This reduction was caused by the disappearance of alternating MTs. Microtubules retained this density (50/ 50 μm) up to 6 h, and then gradually disappeared within 24 h. Microfibril orientation in the innermost cell wall was transverse after treatment with APM for 2 h but was helicoidal after 6 h. Polymerization of MTs occurred in the longitudinal direction following the removal of APM after treatment for 48 h. Microtubule density rose to about 100/50 μm and 200/50 μm after 6 h and 24 h, respectively. The orientation of MTs changed from helicoidal to transverse and transverse to longitudinal after 6 h and 24 h, respectively. When APM was removed prior to formation of the helicoidal texture, longitudinally oriented MFs appeared within 6 h. There is thus an alternating cycle of formation of longitudinally and transversely oriented MFs within a 12-h period. Formation of transversely oriented MFs as a result of APM treatment started in the middle of a cell as hoops which then extended in the apical and basal directions. Formation of longitudinally oriented MFs as a result of the removal of APM started from the apical end and proceeded toward the base. It follows from these results that: (1) the point of formation of longitudinally oriented MFs differs from that for transversely oriented MFs, (2) MF orientation in each case depends on a separately functioning mechanism, (3) MT density changes rhythmically to trigger a switch for crisscross orientation of MFs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 186 (1995), S. 24-33 
    ISSN: 1615-6102
    Keywords: Cellulose microfibril ; Electron diffraction ; Glomerulocyte ; Metandrocarpa uedai ; Tunic ; Vacuole-like structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The tunicate,Metandrocarpa uedai, contains a large quantity of cellulose; however, it is not known how and where the cellulose is synthesized. Based on evidence from electron diffraction and conventional thin-sectioning for electron microscopy, this study shows that the glomerulocyte is involved in the synthesis of cellulose. The bundles of microfibrils in the glomerulocyte as well as the tunic were identified as cellulose I using selected area electron diffraction analysis. The diffraction pattern of cellulose in the glomerulocyte was similar to that from the tunic, suggesting that the crystallization of cellulose already is initiated in the glomerulocyte. The diameter of cellulose microfibrils, both in the glomerulocyte and the tunic was the same, about 16 nm. These results suggest that the glomerulocyte is the most probable site for the synthesis of cellulose in the tunic ofM. uedai. Using thin-sectioning techniques, a series of observations showed that individual microfibrils are primarily assembled in structures tentatively identified as vacuole-like structures, then they are bundled by a tapering region within the vacuole-like structures. These bundles of microfibrils are deposited in a continuously circular arrangement. The microtubules are oriented parallel to the bundles of microfibrils at the tapering vacuole-like structure, and they may be involved in the tapering of these structures (perhaps controlling the shape). This study also provides the first account for the involvement of a vacuole-like structure in the synthesis of cellulose microfibrils among living organisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1615-6102
    Keywords: Boergesenia forbesii ; Cellulose synthesizing complex ; Cytoskeleton ; Helicoidal wall ; Membrane fluidity ; Microfibril orientation ; Plasma membrane
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Microfibrillar textures and orientation of cellulose microfibrils (MFs) in the coenocytic green alga,Boergesenia forbesii, were investigated by fluorescence and electron microscopy. Newly formed aplanosporic spherical cells inBoergesenia start to form cellulose MFs on their surfaces after 2 h of culture at 25°C. Microfibrillar orientation becomes random, fountain-shaped, and helicoidal after 2, 4, and 5 h, respectively. The fountain orientation of MFs is usually apparent prior to helicoidal MF orientation and thus may be considered to initiate helicoid formation. Microfibrils continue to take on the helicoidal arrangement during the growth ofBoergesenia thallus. The helicoidal orientation of MFs occurs through gradual counterclockwise change in MF deposition by terminal complexes (TCs) viewed from inside the cell. On the dorsal side of curving TC impressions in helicoidal texture formation on a freeze-fractured plasma membrane, the aggregation of intramembranous particles (IMPs) occurs. Membrane flow may thus possibly affect the regulation of helicoidal orientation inBoergesenia. Following treatment with 3 μM amiprophos-methyl (APM) or 1 mM colchicine, cortical microtubules (MTs) completely disappear within 24 h but helicoidal textures formation is not affected. With 15 μM cytochalasin B or 30 μM phalloidin, however, the helicoidal orientation of MFs becomes random. Treatment with CaCl2 (10 mM) causes the helicoidal MF orientation of cells to become random, but co-treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) (100 mM) prevents this effect, though W-7 has no effect on the helicoidal MF formation. It thus follows that MF orientation inBoergesenia possibly involves actin whose action may be regulated by calmodulin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1615-6102
    Keywords: Cellulose microfibril ; Cross-sectional shape ; Lattice image ; Lattice orientation ; Glomerulocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Glomerulocyte cellulosic bundles ofPolyzoa vesiculiphora were investigated by microdiffraction and high-resolution electron microscopy. In each bundle, hundreds of cellulose microfibrils, having a rectangular cross-sectional shape, are packed regularly with their 0.6 nm lattice planes parallel to each other. Lattice images reveal that the 0.6 nm plane is parallel to the longer edge of the cross section which is similar to the lattice organization of cellulose with a squarish cross section inValonia spp. More interestingly, all the microfibrils in a bundle have the same directionality of crystallographic c-axis, which suggests that the biosynthesis of the microfibrils within particular bundle occurs unidirectionally.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 268 (1990), S. 1052-1058 
    ISSN: 1435-1536
    Keywords: Liposome ; Ca2+ translocation ; phosphatidylcholine ; teleocidin ; TPA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The effect of defects in a dipalmitoylphosphatidylcholine (DPPC) membrane on Ca2+ permeability across the membrane was studied. Addition of teleocidin to a suspension of DPPC vesicles encapsulating Quin 2 increased the fluorescence intensity of Quin 2. Change of fluorescence intensity was significant below the phase-transition temperature of the membrane, and increased according to the kind of divalent metal ions in the medium in the order of Mg2+〈Ba2+〈Ca2+. It was confirmed that DPPC vesicles did not change the vesicular structure upon binding teleocidin to the membrane. Therefore, the fluorescence increase below the phase-transition temperature was ascribed to the influx of divalent cations into DPPC vesicles through cracks formed in the membrane upon distribution of teleocidin. By contrast, 12-0-tetradecanoylphorbol-13-acetate (TPA) did not change the fluorescence intensity of Quin 2 significantly. It should be noted that teleocidin, which located at the membrane surface, yielded more significant defects across the lipid membrane than TPA, which was incorporated into the hydrophobic core of the membrane.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...