Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • RFLP  (5)
  • Wheat  (5)
  • Polymer and Materials Science  (4)
  • In situ hybridization  (2)
  • RFLP analysis  (2)
  • 1
    ISSN: 1432-041X
    Keywords: Chymotrypsin ; Larva ; Metamorphosis Mollusc ; In situ hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the non-feeding larva of the marine gastropod, Haliotis rufescens, gut morphogenesis is initiated at metamorphosis. Intestine-specific chymotrypsin gene expression begins in amoebocytes located in the dorsoposterior region of the undifferentiated digestive gland prior to metamorphosis, 5 d post-fertilization. Transcript accumulates steadily in these cells over the next 6 d while the amoebocytes migrate slowly dorsally. Induction of metamorphosis dramatically accelerates the rates of chymotrypsin mRNA accumulation and amoebocyte migration, and is required for homing of the amoebocytes to the hindgut region. Induction of chymotrypsin gene expression occurs only in larvae that had developed competence to recognize an exogenous morphogenetic cue and initiate metamorphosis, with a more pronounced increase in chymotrypsin mRNA accumulation in occurring older larvae. Chymotrypsin mRNA accumulation patterns suggest that hindgut cell specification occurs prior to metamorphosis, but that completion of the morphogenetic program requires signaling events associated with metamorphosis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-041X
    Keywords: Key words Ascidian ; Serine protease ; Differential display ; Gene expression ; In situ hybridization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  We have studied gene expression during ascidian embryonic development using the technique of differential display and isolated partial cDNA sequences of 12 genes. Developmental regulation of these genes has been confirmed by northern hybridization analysis. Further cDNA cloning and sequence analysis of an mRNA that is present during gastrulation, neurulation and tailbud formation reveals that it encodes a novel serine protease containing a single kringle motif and catalytic domain. The spatial expression of this gene, designated Hmserp1, is restricted to precursor cells of the epidermis. The structure and expression of Hmserp1 is discussed in relation to possible functions during development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 1063-1067 
    ISSN: 1432-2242
    Keywords: T. monococcum ssp. monococcum ; T. monococcum ssp. boeoticum ; T. urartu ; RFLP ; Diversity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The A genome of the Triticeae is carried by three diploid species and subspecies of the genus Triticum: T. monococcum ssp. monococcum, T. monococcum ssp. boeoticum, and T. urartu, the A-genome donor of bread wheat. These species carry many genes of agronomic interest, including disease resistances, and may also be used for the genetic mapping of the A genome. The aim of this study was to evaluate the variability present in a sample of 25 accessions representative of this group using RFLP markers. Twenty probes, consisting of genomic DNA or cDNA from wheat, were used in combination with four restriction enzymes. A high level of polymorphism was found, especially at the interspecific level. Selecting the most informative enzymes appeared to be of great importance in order to obtain a stable structure for the diversity observed with only 20 probes. The results are largely consistent with taxonomy and data relating to geographical origins. The probes were also tested on 14 wheat cutivars. A good correlation coefficient was found for their informative values on wheat cultivars and diploid lines. Whether the group of species studied here would be useful for genetic mapping remains to be determined. Nevertheless, RFLP markers will be useful to follow genes that can possibly be introgressed from these species into cultivated wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2242
    Keywords: Kernel hardness ; Wheat ; RFLP ; QTL ; Puroindoline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A molecular-marker linkage map of wheat (Triticum aestivum L. em. Thell) provides a powerful tool for identifying genomic regions influencing breadmaking quality. A variance analysis for kernel hardness was conducted using 114 recombinant inbred lines (F7) from a cross between a synthetic and a cultivated wheat. The major gene involved in kernel hardness, ha (hard), known to be on chromosome arm 5DS, was found to be closely linked with the locus Xmta9 corresponding to the gene of puroindoline-a. This locus explained around 63% of the phenotypic variability but there was no evidence that puroindoline-a is the product of Ha (soft). Four additional regions located on chromosomes 2A, 2D, 5B, and 6D were shown to have single-factor effects on hardness, while three others situated on chromosomes 5A, 6D and 7A had interaction effects. Positive alleles were contributed by both parents. A three-marker model explains about 75% of the variation for this trait.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Kernel hardness ; Wheat ; RFLP ; QTL ; Puroindoline
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A molecular-marker linkage map of wheat (Triticum aestivum L. em. Thell) provides a powerful tool for identifying genomic regions influencing breadmaking quality. A variance analysis for kernel hardness was conducted using 114 recombinant inbred lines (F7) from a cross between a synthetic and a cultivated wheat. The major gene involved in kernel hardness, ha (hard), known to be on chromosome arm 5DS, was found to be closely linked with the locus Xmta9 corresponding to the gene of puroindoline-a. This locus explained around 63% of the phenotypic variability but there was no evidence that puroindoline-a is the product of Ha (soft). Four additional regions located on chromosomes 2A, 2D, 5B, and 6D were shown to have single-factor effects on hardness, while three others situated on chromosomes 5A, 6D and 7A had interaction effects. Positive alleles were contributed by both parents. A three-marker model explains about 75% of the variation for this trait.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: Key words Plant height ; Molecular markers ; QTL ; Wheat ; Doubled-haploid lines
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Plant height in wheat (Triticum aestivum L. em Thell) is known to be under polygenic control. Crosses involving genes Rht-B1 and Rht-D1, located on chromosomes 4BS and 4DS, respectively, have shown that these genes have major effects. Two RFLP loci were found to be linked to these two genes (Xfba1-4B with Rht-B1 and Xfba211-4D with Rht-D1) by genotyping a population of F1-derived doubled-haploid lines [‘Courtot’ (Rht-B1b+Rht-D1b)בChinese Spring’]. Using a well-covered molecular marker map, we detected three additional regions and one interaction influencing plant height. These regions, located on chromosome arms 4BS (near the locus Xglk556-4B), 7AL (near the locus Xglk478-7A) and 7BL (near the locus XksuD2-7B) explained between 5% and 20% of the variability for this trait in this cross. The influence of 2 loci from chromosome 4B (Xfba1-4B and Xglk556-4B) suggests that there could be a duplication of Rht-B1 on this chromosome originating from Cv ‘Courtot’. Moreover, an interaction effect between loci from chromosome arms 1AS (near the locus Xfba393-1A) and 1BL (near the locus Xcdo1188-1B) was comparable to or even higher than those of the Rht-B1b and Rht-D1b alleles. A model including the main effects of the loci from chromosomes 4B and 4D (Xfba1-4B, Xglk556-4B and Xfba211-4D) and the interaction effect between Xfba393-1A and Xcdo1188-1B is proposed, which explains about 50% of the variation in plant height. The present results are discussed in relation to those obtained using nullisomic or substitution lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 89 (1994), S. 982-990 
    ISSN: 1432-2242
    Keywords: RFLP analysis ; Wheat-rye addition lines ; Chromosomal rearrangements ; Anther culture ; Regeneration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rye chromosomes of wheat-rye addition lines were successfully identified by means of an RFLP analysis with 30 probes. Our results are in agreement with previous cytological data concerning the identity of lines F (+1R), D (+2R), C (+3R), A (+4R), E (+5R) and B (+7R). Two categories of chromosomal rearrangements have been distinguished, namely: (1) deletions: the current line D possesses a chromosome 2R deleted on its short arm and the line G a chromosome 3R deleted on its long arm; we have also noticed a deletion on the long arm of wheat chromosome 1A in line F61; and (2) evolutionary reciprocal translocations in rye relative to wheat which have been previously mentioned in the literature. The anther culture response of the different lines was studied. A significant difference between ‘FEC 28’ and the addition lines was observed for embryo production and plant regeneration. It appears that genes located on ‘S 10’ chromosome arm 3RL and on ‘FEC 28’ chromosome arm 1AL increase embryo frequency whereas gene(s) located on ‘S 10’ chromosome 5R reduce(s) it. Plant regeneration results suggest that genes increasing regeneration ability and green-plant frequency are located on ‘S 10’ chromosome 4R. The long arm of chromosome 1A seems to be involved positively in green-plant regeneration whereas chromosomes 1R and 3R limit plant regeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Agropyron cristatum ; Alien addition ; RFLP ; Non-radioactive labelling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A non-radioactive digoxigenin-labelled DNA method was used successfully to identify RFLP markers in 54 Triticum aestivum cv ‘Chinese Spring’ — Agropyron cristatum (2n=28, genome PPPP) P-genome monosomic addition lines. Southern analysis using a set of 14 DNA probes identifying each homoeologous chromosome arm, combined with two restriction enzymes HindIII and EcoRI, indicated that six A. cristatum chromosomes (1P, 2P, 3P, 4P, 5P and 6P) and five A. cristatum chromosome arms (2PS, 2PL, 5PL, 6PS and 6PL) have been individually added to the wheat genome. The added chromosomes of three lines were Agropyron translocated chromosomes. It was also found that two addition plants possessed an Agropyron-wheat translocation. These results showed that RFLP analysis using the set of assigned wheat probes was a powerful tool in detecting and establishing homoeology of alien A. cristatum chromosomes, or arms, added to wheat, as well as in screening the alien addition material. The creation of the monosomic addition lines should be useful for the transfer of disease-resistance genes from A. cristatum to wheat.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2242
    Keywords: RFLP analysis ; Whea ; Aegilops ventricosa ; Leaf rust resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract RFLP analysis has been used to characterise XMv, a chromosome of Aegilops ventricosa present in a disomic addition line of wheat. This chromosome is known to carry a major gene conferring resistance to leaf rust (Lr). The analysis demonstrated that XMv is translocated with respect to the standard wheat genome, and consists of a segment of the short arm of homoeologous group 2 attached to a group 6 chromosome lacking a distal part of the short arm. Lr was located to the region of XMv with homoeology to 2S by analysis of a leaf rust-susceptible deletion line that was found to lack the entire 2S segment. Confirmation and refinement of the location of Lr was obtained by analysis of a spontaneous resistant translocation in which a small part of XMv had been transferred to wheat chromosome 2A.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2242
    Keywords: Key word Crossability ; Wheat ; Rye ; Molecular markers ; QTL ; Kr genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  An intervarietal molecular-marker map was used for the detection of genomic regions influencing crossability between wheat (Triticum aestivum L. em Thell) and rye (Secale cereale L.). Analysis of deviance and logistic marker-regression methods were conducted on data from doubled haploid lines from a cross between “Courtot” and “Chinese Spring”. A major quantitative trait locus (QTL) involved in crossability, associated with the marker Xfba367-5B, was detected on the short arm of chromosome 5B. An additional locus, Xwg583-5B, was indicated on the long arm of chromosome 5B. This minor QTL might correspond to Kr1 which was presumed to be the major gene controlling crossability. Another locus of the genome, Xtam51-7A on chromosome 7A, was significantly associated with this trait. Alleles of “non-crossability” were contributed by the non-crossable cultivar “Courtot”. The three-marker model explains 65% of the difference in crossability between the two parents. The present results are discussed in relation to those previously carried out to locate the Kr genes by using the telocentric mapping technique.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...