Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Nociception  (5)
  • Inflammation  (4)
  • Mechanoreceptors  (3)
  • 1
    ISSN: 1432-1106
    Keywords: Mechanoreceptors ; Cutaneous Afferents ; Afterpotentials ; Primary Afferent Depolarization ; Spinal Cord
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Mechanoreceptors of the hairy skin and the central pad of the cat's hind foot were activated using piezo-electric crystals as mechanical stimulators. Their afferent fibres were traced in the lumbar spinal cord by stimulating antidromically and by recording the collision of the antidromic and orthodromic action potentials. Low threshold mechanoreceptor units could be stimulated in isolation. It was possible, therefore, to follow the postspike excitability changes of their fibres in the spinal cord without interference from other spinal cord potentials. Primary afferent depolarization has been induced in cutaneous afferents by stimulating muscle and cutaneous nerves. It has been found that the a cutaneous fibres of mechanoreceptors were depolarized by volleys in a cutaneous fibres and to a lesser degree by volleys in Group I b, II and III muscle afferents but not by high threshold cutaneous afferents. The primary afferent depolarization of cutaneous fibres has been subjected to the action of an impulse propagating down that fibre to its central terminals. Excitability testing revealed that the amplitude and the time course of the primary afferent depolarization were only altered up to about 30 ms after the impulse indicating an active depolarization of the presynaptic terminals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 31 (1978), S. 511-522 
    ISSN: 1432-1106
    Keywords: Muscle group IV afferent units ; Muscle pain ; Chemo-nociceptors ; Mechanoreceptors ; Contraction-sensitive receptors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In an attempt to differentiate between nociceptive group IV muscle receptors and “ergoceptive” ones, the discharges of single group IV fibres from skeletal muscle in response to local pressure, sustained stretch, repetitive contraction and intra-arterial injections of bradykinin, 5-hydroxytryptamine (5-HT), potassium, phosphate, and lactate were studied in anaesthetized cats. Of the 75 fibres of the study, 5 units were activated by sustained stretch, the responses occurring with a delay. These stretch-sensitive units could not be activated by local pressure or muscular contraction. Thirteen group IV afferents raised their discharge frequency during repetitive contractions. Some of the units responded immediately with the onset of the contractions, whereas the others showed a pronounced delay. Forty-six units were tested with all or most of the above mechanical and chemical stimuli. In 32 afferents a response to at least one of the stimuli was present. Taking only these units into account, several groups of receptors could be distinguished by their different response combinations. One group was activated by pain-producing substances, but not by muscular activity and thus showed nociceptive properties. Another group showed a raised activity during muscular contractions but did not respond to the algesic agents bradykinin and 5-HT. Units belonging to this group might serve as “ergoceptors”. The borderline between the two groups was not sharp, a considerable number of group IV afferents was found which had both nociceptive and “ergoceptive” properties.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 175 (1987), S. 289-301 
    ISSN: 1432-0568
    Keywords: Dura mater encephali ; Sensory receptors ; Nerve fibres ; Vascular bed ; Lymphatic vessel ; Nociception ; Headache
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The dura mater encephali of the rat is richly supplied by myelinated (A-axons) and unmyelinated (C-axons) nerve fibres. For the supratentorial part the main nerve supply stems from all three branches of the trigeminal nerve. Finally, 250 myelinated and 800 unmyelinated nerve fibres innervate one side of the supratentorial part. The vascular bed of the dura mater exhibits long postcapillary venules up to 200 μm in length with segments of endothelial fenestration. Lymphatic vessels occur within the dura mater. They leave the cranial cavity through the openings of the cribriform plate, rostral to the bulla tympani together with the transverse sinus, and the middle meningeal artery. The perineural sheath builds up a tube-like net containing the A- and C-axons. It is spacious in the parietal dura mater and dense at the sagittal sinus along its extension from rostral to caudal and at the confluence of sinuses. Terminals of both the A- and C-axons are of the unencapsulated type. Unencapsulated Ruffini-like receptors stemming from A-axons are found in the dural connective tissue at sites where superficial cerebral veins enter the sagittal sinus and at the confluence of sinuses. The terminations of single A-axons together with C-fibre bundles mix up in their final course in one Schwann cell to build up multiaxonal units or terminations (up to 15 axonal profiles). A morphological differentiation is made due to the topography of these terminations; firstly, in different segments of the vascular bed: postcapillary venule, venule, the sinus wall, lymphatic vessel wall, and secondly, within the dura mater: inner periosteal layer, collagenous fibre bundles of the meningeal layer and at the mesothelial cell layer of the subdural space.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Annals of hematology 76 (1998), S. 231-248 
    ISSN: 1432-0584
    Keywords: Key words Allergy ; Autoimmunity ; FcγR ; IgG ; Inflammation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. IgG immune complexes are of central importance in the humoral immune system and strongly implicated in the pathogenesis of hematologic and rheumatic autoimmune disorders. Cross-linking of receptors for the Fc domain of IgG antibodies (FcγRs) triggers a wide variety of effector functions including phagocytosis, antibody-dependent cellular cytotoxicity, and release of inflammatory mediators, as well as immune complex clearance and regulation of antibody production. In this way, FcγR provide an essential feedback between the humoral and cellular immune response. In the past, significant advances have been made in the molecular dissection of FcγR function using cellular transfection systems. Current approaches designed to target and change individual FcγR genes in mice have given further insight into their specific contributions to systemic processes, also indicating them to be important immunoregulatory receptors involved in various disease states of allergy, autoimmunity, and inflammation. Future work on targeting FcγR binding sites in combination with humanized FcγR mouse models will lead to novel therapeutic strategies in the treatment of IgG-mediated human disease in which FcγR activation plays an integral part.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 6 (1968), S. 100-115 
    ISSN: 1432-1106
    Keywords: Mechanoreceptors ; Pacinian corpuscles ; Cutaneous afferents ; Peripheral encoding ; Skin sensitivity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The properties of mechanosensitive units with large myelinated afferents were determined in the hairless skin of the central pad of the cat's hind foot, and the total afferent outflow from this region after short skin indentations and during constant force stimuli was measured in the plantar nerves. Basically three types of mechanosensitive units with afferent conduction velocities above 40 m/s were found: (a) receptors with the properties of Pacinian corpuscles (PC-receptors); (b) receptors which showed burst discharges for up to 500 ms after the onset of a constant force stimulus (RA-receptors); and (c) receptors which discharged throughout a constant force stimulus (SA-receptors). The afferent conduction velocities of these units were in the same range as those of receptors from the surrounding hairy skin. A considerable proportion of receptors from both skin areas had no collaterals in the dorsal columns. The afferent outflow after short skin indentations of up to 5 μ displacement consisted of impulses from PC-receptors only. Stimuli of 20 μ recruited between 50 and 100 afferent units of which less than 10% were other than PC-units. During constant force stimuli the afferent outflow came from SA-receptors only. Ten seconds after stimulus onset a 500 g stimulus evoked an afferent discharge of about 1000 imp/s and a 1000 g stimulus of about 1700 imp/s. At all times a power function of the form F=K · (S−S0)n related the afferent discharge F to the stimulus intensity S. The exponents were around n=0.5 and tended to increase in the course of the stimulus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: [K+]0 Spinal cord ; Posterior articular nerve ; Knee joint ; Inflammation ; Pain ; Arthritis ; Nociception ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In 20 cats anaesthetized with alpha-chloralose and spinalized at the thoracolumbar junction we investigated the role of stimulation induced accumulation of extracellular potassium in the spinal cord in the processing of nociceptive discharges from the knee joint. For that we electrically stimulated the posterior articular nerve of the knee. We further performed innocuous and noxious stimulation of the knee and of other parts of the leg and studied the effect of an acute inflammation of the knee on [K+]0 in the spinal cord. Innocuous stimulation of the skin (brushing or touching) and innocuous movements in the knee joint all induced rises in [K+]0 which were maximal at recording depths of 1500 to 2200 μm below the surface of the cord dorsum. Peak increases were 0.4 mM for touching the leg and 1.7 mM during rhythmic flexion/ extension of the knee joint. Noxious stimulation of the skin, the paw, the tendon and noxious movements of the knee joint also produced rises in [K+]0, which were somewhat larger for the individual types of stimuli than those produced by innocuous intensities. Electrical stimulation of the posterior articular nerve induced rises in [K+]0 by up to 0.6 mM. Stimulus intensities sufficient to activate unmyelinated group IV fibers were only slightly effective in raising [K+]0 above the levels reached during stimulation of myelinated group II and III fibers. During development of an acute inflammation of the knee joint (induced by kaolin and carrageenan), increases in [K+]0 and associated field potentials became larger by about 25%. We assume that this reflects an increase in neuronal responses. In conclusion, changes in [K+]0 in the spinal cord are some-what larger during noxious stimulation than during innocuous stimulation. The absolute level reached depended more on the site and type of stimulation than on the actual stimulus intensity itself. Hence a critical role of spinal K+ accumulation for nociception is unlikely.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: Pain ; Inflammation ; Descending inhibition ; Nociception ; Spinal cord ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In ten cats, single unit electrical activity was recorded in the lumbosacral spinal cord from neurones driven by stimulation of afferent fibres from the ipsilateral knee joint. Tonic descending inhibition (TDI) on the responses of these cells was measured as increases in resting and evoked activity of the neurones following reversible spinalization of the animals with a cold block at upper lumbar level. Acute inflammation of the knee joint was induced in five of the cats by the injection of kaolin and carrageenan into the joint. TDI was observed in 25 of 33 neurones recorded in normal animals (76%) and in 36 of 40 (90%) neurones recorded in animals with acute knee joint inflammation. In both kinds of preparation TDI was more pronounced in neurones recorded in the deep dorsal horn and in the ventral horn than in those recorded in the superficial dorsal horn. There was a tendency in the whole sample for TDI to be greater in neurones with input from inflamed knees. We conclude that the spinal processing of afferent information from joints is under tonic descending influences and that the amount of TDI can be altered during acute arthritis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Joint ; Pain ; Inflammation ; Spinal cord ; Ascending tracts ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary 1. Recordings were made from 16 ascending tract cells in the spinal cords of anaesthetized, spinalized cats before and after an acute arthritis was produced by injection of kaolin and carrageenan into the knee joint. 2. The responses tested routinely were to passive flexion of the knee, an innocuous movement. In some cases, responses to other movements were also tested, and changes in background discharge rates were monitored. 3. Control recordings for a period of 1 h or in 3 cases of 3 h indicated that the responses to flexion were reasonably stationary. 4. Four tract cells that initially showed little or no response to flexion of the knee joint developed large responses within 1 to 2 h after inflammation of the joint. 5. Another 9 cells were tested that had responses to flexion of the knee joint prior to inflammation. In 6 cases, inflammation produced enhanced static or transient responses. In 2 cases, the effect of flexion was initially inhibitory or variable, but after inflammation these cells showed large excitatory responses. In the other case, inflammation had no effect. Background discharges were increased by inflammation in 6 of these 9 cells. 6. The effect of inflammation of the knee joint was tested on 3 tract cells that had no clearly defined receptive field in the knee. In 1 case, a response developed to knee flexion after acute inflammation was produced. In the other 2 cases, there were initially responses to knee flexion, but these were unchanged by inflammation. 7. Two of the cells tested had bilateral receptive fields in or around the knee joints. Inflammation of one knee joint enhanced the responses to flexion of the same but not of the contralateral knee in one case but greatly increased the responses to flexion of both knees in the other case. 8. Injections of prostaglandin (PGE2) caused an enhancement of the responses to knee flexion beyond that caused by inflammation in 5 of 7 cases. One cell whose responses to flexion of the knee were unaffected by inflammation showed inhibitory responses to prostaglandin injections into the inflamed knee joint. 9. The effects of inflammation on the responses of ascending tract cells of the spinal cord appear to serve as a useful neural model of the events responsible for the development of arthritic pain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 92 (1993), S. 391-398 
    ISSN: 1432-1106
    Keywords: Joint afferents ; Nociception ; Transduction ; Phorbol esters ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The effects of β -phorbol 12, 13-dibutyrate (PDBu) on the discharge properties of slowly conducting knee joint afferents (group III and group IV fibers) were studied to determine the role of protein kinase C in nociception. Extracellular single unit recordings were made from small filaments dissected from the medial articular nerve in cats anesthetized with alphachloralose. PDBu was applied intra-arterially close to the joint in concentrations of 10-6 up to 10-4 M. The afferents were classified as low-threshold and high-threshold units with regard to their sensitivity to passive noxious and innocuous movements of the knee joint. Following PDBu application, an excitation occurred in 28% of the group III and in 40% of the group IV fibers. An enhancement of responses to passive movements of the joint (sensitization) occurred in 37% of group III and 19% of group IV afferents. In summary, 37.5% of the low-threshold and 50% of the high-threshold fibers proved to be sensitive to PDBu. Most of the PDBu-positive units responded also to bradykinin, whereas only a few PDBu-positive units were sensitive to prostaglandin I2 and E2. We conclude from these results that, in a distinct population of slowly conducting joint afferents, protein kinase C is likely to be involved in the process of transduction. Thus, pain and hyperalgesia may be mediated at least partly by intracellular mechanisms that are linked to protein kinase C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 101 (1994), S. 452-464 
    ISSN: 1432-1106
    Keywords: Somatosensory thalamus ; Knee joint ; Nociception ; Bradykinin ; Capsaicin ; Cat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In order to gain insight into the representation of articular pain of the knee at the supraspinal level, recordings were made from lateral thalamic neurons receiving input from afferent fibres of the knee joint in chloralose-anaesthetized cats. Dorsoventral penetrations were made through the ventral posterior lateral nucleus (VPL) using high intensity electrical stimulation of the medial articular nerve (MAN), which contains a high proportion (80%) of Aδ and C afferent fibres. All recording sites were verified histologically. Close retrograde injections (300 μl over 6 s) into geniculate artery of KCl (2 × isotonic), bradykinin (BK, 2.6 or 26 μg) and capsaicin (200 μM) were used to test the response properties of thalamic neurons. Of the 50 MAN-positive units tested, 20 showed a response to intra-arterial KCl; of these 20, 12 had a response to BK; 8 of these 12 units were additionally tested with capsaicin and all responded. KCl and capsaicin injections had similar mean response latencies (4.5 and 6.8 s), whereas BK had a longer mean latency (18.6 s). The mean peak response was greatest for capsaicin (168 impulses/s), then KCl (87.5 imp/s) and least with BK (36.4 imp/s). The mean response duration was longest with capsaicin (118 s), followed by BK (67.5 s) and least with KCl (27.9 s). Most of these were convergent wide dynamic range (WDR) neurons with a deep receptive field in the knee joint and hindlimb muscle and/or cutaneous distal hind limb digit, located to the dorsal or ventral periphery of the lateral division of the VPL, the VPLl. In addition, 8 neurons showed inhibitory responses to KCl and/or BK injections. The background activity of the VPLl neurons activated by saphenous nerve stimulation was inhibited by the nociceptive articular stimulus with a magnitude and time course which mirrored the excitatory responses in the periphery of VPLl. These results support the concept that the lateral thalamus plays an important role in mediating discriminative aspects of joint pain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...